Please wait a minute...
分布式能源  2020, Vol. 5 Issue (1): 9-15    DOI: 10.16513/j.2096-2185.DE.2002001
  学术研究 本期目录 | 过刊浏览 |
面向电气化铁路的超级电容储能系统经济性研究
邬明亮,王世彦
国网浙江省电力有限公司建设分公司,浙江 杭州 310000
Economic Research on Supercapacitor Energy Storage System for Electrified Railway
WU Mingliang ,WANG Shiyan 
Construction Company of State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310000, Zhejiang Provinec, China
全文: PDF(1389 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要: 

电气化铁路是一种大工业用电,电价较高,且存在大量再生制动电能无法纳入反向计量范围,将这部分电能通过储能系统回收利用,不存在边际成本,可显著提高储能系统的经济性。以电气化铁路超级电容储能系统为对象,建立了充放电策略及全寿命周期经济性模型,以全投资财务内部收益率、资本金财务内部收益率、敏感度系数为评价指标,利用实际牵引负荷和典型参数,分析了储能系统的经济性。算例结果表明,储能系统的电能利用率整体较低,为提高电能利用率而过于增大储能系统的规模不可取;单位容量成本高是制约储能系统可投资性的首要因素,度电电价低次之;为提高储能系统的经济性,应尽可能多地利用贷款进行投资,同时尽可能延长贷款时间。

关键词: 电气化铁路超级电容储能系统财务内部收益率敏感度系数    
Abstract

Electrified railway is a kind of large industrial user with high electricity price. It generates a large amount of braking energy which cannot be measured in reverse. There is no marginal cost to recycle this part of energy through energy storage system, which can improve the economic performance of energy storage system. This paper studied the supercapacitor energy storage system of electrified railway, established charging and discharging strategy and life-cycle economic model. With total investment financial internal rate of return, capital financial internal rate of return and sensitivity coefficient as evaluation indexes, the economic performance of energy storage system was analyzed using actual traction load and typical parameters. The results show that the energy utilization ratio of the energy storage system is low, and it is not advisable to increase the scale of energy storage system too much in order to improve the energy utilization ratio. The high cost of unit capacity is the primary factor restricting the economic performance of energy storage system, the low electricity price takes the second place. In order to improve the economic performance of energy storage system, loan should be used as much as possible for investment and the loan time should be as long as possible.

Key Wordselectrified railwaysupercapacitorenergy storage systemfinancial internal rate of returnsensitivity coefficient
收稿日期: 2020-01-02
ZTFLH:  TK9  
作者简介: 邬明亮(1992—),男,硕士,经济师、助理工程师,研究方向为光伏储能技术,leckiewu@foxmail.com;|王世彦(1989—),男,本科,工程师,研究方向为工程项目管理,maxant@qq.com。

引用本文:

邬明亮, 王世彦. 面向电气化铁路的超级电容储能系统经济性研究[J]. 分布式能源, 2020, 5(1): 9-15.
WU Mingliang , WANG Shiyan . Economic Research on Supercapacitor Energy Storage System for Electrified Railway[J]. Distributed Energy, 2020, 5(1): 9-15.

链接本文:

http://der.tsinghuajournals.com/CN/10.16513/j.2096-2185.DE.2002001      或      http://der.tsinghuajournals.com/CN/Y2020/V5/I1/9

图1  电气化铁路超级电容储能系统
图2  牵引变电站两臂有功功率
图3  储能系统充放电策略
表1  经济性参数
图4  电能利用率与储能配置的关系
图5  全投资财务内部收益率与储能配置的关系
图6  不考虑贷款的敏感性分析
图7  资本金财务内部收益率与储能配置的关系
图8  考虑贷款的敏感性分析
[1] SUN Zhongcan, LIU Weiwei. Coordinated control of metro permanent magnet traction system based on super capacitor energy storage[J]. Distributed Energy, 2019, 4(2): 53-59.
[1] 孙中灿,刘伟伟. 基于超级电容储能的地铁永磁牵引系统协调控制[J]. 分布式能源,2019, 4(2): 53-59.
[2] XIN Peizhe, CAI Shengxia, ZOU Guohui, et al. Development strategy research of smart grid adapting to new era economic and special development[J]. Distributed Energy, 2018, 3(1): 21-27.
[2] 辛培哲,蔡声霞,邹国辉,等. 适应经济社会发展的智能电网发展战略研究[J]. 分布式能源,2018, 3(1): 21-27.
[3] WU Mingliang, DAI Chaohua. Self-accommodation photovoltaic/energy-storage system and its control strategy in electrified railway[J]. Distribution & Utilization, 2018, 35(12): 56-62.
[3] 邬明亮,戴朝华. 电气化铁路自发自用型光伏储能系统及其控制策略[J]. 供用电,2018, 35(12): 56-62.
[4] 于坤山,周胜军,王同勋,等. 电气化铁路供电与电能质量[M]. 中国电力出版社,2011.
[5] ZHANG Youpeng, YANG Hongwei, ZHAO Shanpeng. Application and control of super capacitor in high-speed railway regenerative braking energy storage[J]. Energy Storage Science and Technology, 2019, 8(6): 1145-1150.
[5] 张友鹏,杨宏伟,赵珊鹏. 超级电容在高速铁路再生制动能量存储中的应用及控制[J]. 储能科学与技术,2019, 8(6): 1145-1150.
[6] WU Lifeng, SHAN Jinsheng, GUAN Yong, et al. Life prediction method of supercapacitor for considering temperature and voltage[J]. Chinese Journal of Power Sources, 2018, 42(1): 90-92+96.
[6] 吴立锋,单金生,关永,等. 一种考虑温度和电压的超级电容寿命预测方法[J]. 电源技术,2018, 42(1): 90-92+96.
[7] LUO A, MA F, WU C, et al. A dual-loop control strategy of railway static power regulator under V/v electric traction system[J]. IEEE Transactions on Power Electronics, 2011, 26(7): 2079-2091.
[8] MA Qian, GUO Xin, LUO Pei, et al. Coordinated control strategy design of new type railway power regulator based on super capacitor energy storage[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 765-776.
[8] 马茜,郭昕,罗培,等. 基于超级电容储能的新型铁路功率调节器协调控制策略设计[J]. 电工技术学报,2019, 34(4): 765-776.
[9] MA Qian, GUO Xin, LUO Pei, et al. A novel railway power conditioner based on super capacitor energy storage system[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1208-1218.
[9] 马茜,郭昕,罗培,等. 一种基于超级电容储能系统的新型铁路功率调节器[J]. 电工技术学报,2018, 33(6): 1208-1218.
[10] XUE Jinhua, YE Jilei, TAO Qiong, et al. Economic feasibility of user-side battery energy storage based on whole-life-cycle cost model[J]. Power System Technology, 2016, 40(8): 2471-2476.
[10] 薛金花,叶季蕾,陶琼,等. 采用全寿命周期成本模型的用户侧电池储能经济可行性研究[J]. 电网技术,2016, 40(8): 2471-2476.
[11] XUE Jinhua, YE Jilei, TAO Qiong, et al. Multi-scenarios based operation mode and investment decision of source-storage-load system in business park[J]. Electric Power Automation Equipment, 2019, 39(2): 78-83, 92.
[11] 薛金花,叶季蕾,陶琼,等. 基于多场景的商业园区源-储-荷系统运营模式及投资决策研究[J]. 电力自动化设备,2019, 39(2): 78-83, 92.
[12] ZHANG Qing, LI Xinran, YANG Ming, et al. Capacity determination of hybrid energy storage system for smoothing wind power fluctuations with maximum net benefit[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 40-48.
[12] 张晴,李欣然,杨明,等. 净效益最大的平抑风电功率波动的混合储能容量配置方法[J]. 电工技术学报,2016, 31(14): 40-48.
[13] SHEN Hanming, YU Xiahuan. Economic analysis of distributed electrochemical energy storage on the user-side[J]. Zhejiang Electric Power, 2019, 38(5): 50-54.
[13] 沈汉铭,俞夏欢. 用户侧分布式电化学储能的经济性分析[J]. 浙江电力,2019, 38(5): 50-54.
[14] LIU Zhongyi, LI Gengyin. Full life-cycle economic evaluation of hybrid isolated micro-grid[J]. Modern Electric Power, 2015, 32(4): 1-7.
[14] 刘忠义,李庚银. 混合型孤立微网全寿命周期经济性评估[J]. 现代电力,2015, 32(4): 1-7.
[15] Ji?í Libich, Josef Máca, Ji?í Vondrák, et al. Supercapacitors: Properties and applications[J]. Journal of Energy Storage, 2018, 17: 224-227.
[16] LI Qunzhan, WANG Xijun, HUANG Xiaohong, et al. Research on flywheel energy storage technology for electrified railway[J]. Proceedings of the CSEE, 2019, 39(7): 2025-2033.
[16] 李群湛,王喜军,黄小红,等. 电气化铁路飞轮储能技术研究[J]. 中国电机工程学报,2019, 39(7): 2025-2033.
[1] 冉亮, 郭建华, 袁铁江. 新能源站侧规模化应用储能的电力系统运行模拟[J]. 分布式能源, 2020, 5(3): 1-8.
[2] 张丽, 王海刚, 郭婷婷, 张猛, 马林, 王涵, 许超. 石墨烯在储能领域应用现状及展望[J]. 分布式能源, 2020, 5(3): 9-14.
[3] 罗晔. 韩国电化学储能系统研发进展[J]. 分布式能源, 2020, 5(3): 29-33.
[4] 孙中灿,刘伟伟. 基于超级电容储能的地铁永磁牵引系统协调控制[J]. 分布式能源, 2019, 4(2): 53-59.
[5] 杨士慧, 徐向前, 周哲, 才志远, 葛菁, . 纯电动门式起重机制动回收系统与转场电源协调控制策略研究[J]. 分布式能源, 2018, 3(3): 58-64.
[6] 何海平. 基于模糊PI控制的电池储能系统低电压穿越控制策略[J]. 分布式能源, 2017, 2(6): 59-65.
[7] 冯斐,任远洋,王德林. 基于储能系统的风电场功率控制研究[J]. 分布式能源, 2017, 2(2): 20-24.
[8] 靳雯皓,刘继春. 平滑风电功率波动的混合储能系统容量优化配置[J]. 分布式能源, 2017, 2(2): 32-38.
[9] 陈宇豪, 王磊, 杨宇, 米芝昌, 曹国栋, 韩肖清. 风储直流微网孤岛运行控制研究[J]. 分布式能源, 2016, 1(1): 40-46.