Please wait a minute...
分布式能源  2020, Vol. 5 Issue (3): 15-22    DOI: 10.16513/j.2096-2185.DE.2004005
  储能新技术及应用 本期目录 | 过刊浏览 |
基于Simulink的热泵储电系统动态仿真
张谨奕,白宁,李京浩,王含,郭霄宇,韩雨辰,张玮
国家电投集团科学技术研究院,北京 昌平 102209
Dynamic Simulation of Pumped Thermal Electricity Storage System Based on Simulink
ZHANG Jinyi, BAI Ning, LI Jinhao, WANG Han, GUO Xiaoyu, HAN Yuchen, ZHANG Wei
State Power Investment Corporation Research Institute, Changping District, Beijing 102209, China
全文: PDF(1325 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要: 

热泵储电技术(pumped thermal electricity storage,PTES)储能阶段通过热泵循环将电能转换为热能储存,释能阶段通过热机循环将存储的热量转换为电能,适用于大规模储能应用且无特定地理条件限制,可由多种热力学循环类型和储热/冷类型的组合实现。由于目前缺乏对热泵储电系统动态特性的深入研究,难以进行系统的动态性能预测、变工况运行过程的调节控制策略制定以及系统设计优化。基于Simulink平台和模块化建模方法,建立了热泵储电系统热力循环过程的动态仿真模型,研究了热泵储电系统在功率变化条件下的动态性能,包括压缩/膨胀过程压比、转速、温度、压力、流量和功率等工作特性参数的动态响应,通过工作特性参数响应分析说明了热泵储电系统功率调节和控制的可行性,满足电网对热泵储电系统储能功率变化且恒速并网的需求。该动态仿真模型及研究结果可为热泵储电系统变工况运行控制策略制定和系统优化设计提供计算分析工具和理论参考。

关键词: 热泵储电(PTES)热力学循环动态仿真动态响应控制策略    
Abstract

A type of thermal energy storage process for large scale electric applications is referred here as pumped thermal electricity storage (PTES), which based on a high temperature heat pump cycle which transforms electrical energy into thermal energy, followed by a thermal engine cycle which transforms the stored thermal energy back into electrical energy. PTES may be able to make a significant contribution towards future large scale energy storage needs, and without limitations in terms of geographical constraints, PTES may make use of different types of thermodynamic cycles and thermal storages. Due to little work in present literature can be found in-depth research on the dynamic characteristics of PTES, it is difficult to predict the dynamic performance of the system, develop the control strategy technology of operating process, or optimize the system design. A dynamic model of PTES system was built with Simulink and modular modeling approach on the basis of thermodynamic cycle. The dynamic response of working characteristics including compression and expansion ratio, compressor rotating speed, temperature, pressure, mass flow rate, power of PTES system were studied. The feasibility of power control and meeting the requirements of the public grid of energy storage power change were indicated, which providing computational tools and reference of control strategy and design optimization of PTES system.

Key Wordspumped thermal electricity storage (PTES)thermodynamic cycledynamic simulationdynamic responsecontrol strategy
收稿日期: 2020-04-10
ZTFLH:  TK019/TK02  
基金资助:北京市科技计划基金项目(Z201100004520006)
作者简介: 张谨奕(1985),女,博士,高级工程师,研究方向为储能技术,热力循环系统建模、仿真和优化研究,zhangjinyi@spic.com.cn;|白 宁(1982),男,硕士,高级工程师,研究方向为储能技术,储热/储冷技术研究;|李京浩(1985),男,硕士,工程师,研究方向为储能技术,热力循环系统CFD计算;|王 含(1983),女,博士,教授级高级工程师,研究方向为储能技术,液流电池技术研究、储热/储冷技术研究;|郭霄宇(1993),女,硕士,助理工程师,研究方向为储能技术,储热/储冷系统建模与仿真研究;|韩雨辰(1994),男,硕士,助理工程师,研究方向为储能技术,换热系统建模与仿真研究。|张 玮(1988),女,硕士,工程师,研究方向为储能技术,热力循环系统控制研究;

引用本文:

张谨奕, 白宁, 李京浩, 王含, 郭霄宇, 韩雨辰, 张玮. 基于Simulink的热泵储电系统动态仿真[J]. 分布式能源, 2020, 5(3): 15-22.
ZHANG Jinyi, BAI Ning, LI Jinhao, WANG Han, GUO Xiaoyu, HAN Yuchen, ZHANG Wei. Dynamic Simulation of Pumped Thermal Electricity Storage System Based on Simulink[J]. Distributed Energy, 2020, 5(3): 15-22.

链接本文:

http://der.tsinghuajournals.com/CN/10.16513/j.2096-2185.DE.2004005      或      http://der.tsinghuajournals.com/CN/Y2020/V5/I3/15

图1  热泵储电系统的储能过程和释能过程
图2  热泵储电系统储能过程和释能过程T-S图
图3  系统仿真计算流程图
表1  设计工况主参数
图4  转速的动态响应
图5  压比和膨胀比的动态响应
图6  压缩机出口温度的动态响应
图7  透平出口温度的动态响应
表2  各部件出口温度响应时间
图8  各部件出口温度的动态响应
图9  各部件出口压力的动态响应
图10  各部件出口流量的动态响应
图11  各部件出口功率的动态响应
[1] MAHMOUD M, RAMADAN M, OLABI A, et al. A review of mechanical energy storage systems combined with wind and solar applications[J]. Energy Conversion and Management, 2020, 210, 112670: 1-14.
[2] KOOHI-FAYEGH S, ROSEN M A. A review of energy storage types, applications and recent developments[J]. Energy Storage, 2020, 27: 101047
[3] BENATO A, STOPPATO A. Pumped thermal electricity storage: A technology overview[J]. Thermal Science and Engineering Progress, 2018, 6: 301-315
[4] CAHN R P. Thermal energy storage by means of reversible heat pumping: US 4089744[P]. 1978-05-16
[5] DESRUES T, RUER J, MARTY P, et al. A thermal energy storage process for large scale electric applications[J]. Applied Thermal Engineering, 2010, 30(5): 425-432.
[6] HOWES J. Concept and development of a pumped heat electricity storage device[J]. Proceedings of the IEEE, 2012, 100(2): 493-503.
[7] THESS A. Thermodynamic efficiency of pumped heat electricity storage[J]. Physical Review Letters, 2013, 111(11): 110602. 1-110602. 5.
[8] PéRILHON C, LACOUR S, PODEVIN P, et al. Thermal electricity storage by a thermodynamic process: study of temperature impact on the machines[J]. Energy Procedia 2013, 36: 923-938.
[9] MCTIGUE J D, WHITE A J, MARKIDES C N. Parametric studies and optimisation of pumped thermal electricity storage[J]. Applied Energy, 2015, 137: 800-811.
[10] FRATE G F, ANTONELLI M, DESIDERI U. A novel pumped thermal electricity storage (PTES) system with thermal integration[J]. Applied Thermal Engineering. 2017, 121: 1051-1058
[11] GUO J, CAI L, CHEN J, et al. Performance evaluation and parametric choice criteria of a Brayton pumped thermal electricity storage system[J]. Energy, 2016, 113: 693-701.
[12] NI F, CARAM H S. Analysis of pumped heat electricity storage process using exponential matrix solutions[J]. Applied Thermal Energy, 2015, 84: 34-44.
[13] BENATO A. Performance and cost evaluation of an innovative pumped thermal electricity storage power system[J]. Energy, 2017, 138: 419-436
[14] STEINMANN WD. The CHEST (compressed heat energy storage) concept for facility scale thermo mechanical energy storage[J]. Energy, 2014, 69: 543-552.
[15] STEINMANN W D, BAUER D. Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity[J]. Energy, 2019, 183: 185-190
[16] DIETRICH A, DAMMEL F, STEPHAN P. Exergoeconomic analysis of a pumped heat electricity storage system with concrete thermal energy storage[J]. international Journal of Thermal Sciences, 2013, 19(1): 43-51.
[17] MERCANG?Z M, HEMRLE J, KAUFMANN L, et al. Electrothermal energy storage with transcritical CO2 cycles[J]. Energy, 2012, 45: 407-415.
[18] MORANDIN M, MARéCHAL F, MERCANG?Z M, et al. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles-part A: methodology and base case[J]. Energy, 2012, 45 (1): 375-385.
[19] MORANDIN M, MARéCHAL F, MERCANG?Z M, et al. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles-part B: alternative system configurations[J]. Energy, 2012, 45 (1): 386-396.
[20] MORANDIN M, MERCANG?Z M, HEMRLE J. Thermo-economic design optimization of a thermo-electric energy storage system based on transcritical CO2 cycles[J]. Energy, 2013, 58: 571-587.
[21] DIXON S L, HALL C A. 透平机械中的流体力学与热力学[M]. 7版. 西安:西安交通大学出版社,2015: 12-48.
[1] 秦鸣泓,杨胜云,常湧. 基于PSCAD/EMTDC的光伏并网系统建模与仿真[J]. 分布式能源, 2019, 4(4): 10-16.
[2] 曹炜,王海华,陆冉. 电网故障条件下并网光伏逆变器控制策略研究[J]. 分布式能源, 2017, 2(6): 38-45.
[3] 赵豫晋. TICC-500系统储能阶段动态热力特性分析[J]. 分布式能源, 2017, 2(6): 72-77.
[4] 姚骏,骆悦,王雪微,刘超,李琰. 并网双馈感应风电系统轴系振荡抑制控制策略研究[J]. 分布式能源, 2017, 2(5): 11-18.