Please wait a minute...
分布式能源  2020, Vol. 5 Issue (3): 29-33    DOI: 10.16513/j.2096-2185.DE.2004011
  储能新技术及应用 本期目录 | 过刊浏览 |
韩国电化学储能系统研发进展
罗晔
武钢有限技术中心,湖北 武汉 430080
Research and Development of Electrochemical Energy Storage System in South Korea
LUO Ye
Technology Center of Wuhan Iron & Steel Co., Ltd., Wuhan 430080, Hubei Province, China
全文: PDF(1323 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要: 

为了减少温室气体排放,解决能源问题,韩国政府制定了可持续发展战略,加大政策支持和资金投入,重点扶植储能系统(energy storage system, ESS)产业。目前,韩国ESS设备产能和市场规模不断壮大,韩国企业在全球ESS市场占据了举足轻重的地位。在电化学储能系统领域,有关锂离子电池的研究主要集中在理想纳米结构和较大比表面积的纳米材料上;韩国企业自主开发的钠离子电池循环寿命长达15年,比传统电池的能量密度高3倍,有关氧化还原液流电池和超级电容器的研究尚处于起步阶段。

关键词: 储能系统(ESS)电化学储能系统韩国储能系统    
Abstract

In order to reduce greenhouse gas emissions and solve the energy problem, the South Korean government has formulated a sustainable development strategy, increasing policy support and capital investment, focusing on supporting the energy storage system (ESS) industry. At present, the production capacity and market scale of Korean ESS equipment are growing, and Korean enterprises occupy a pivotal position in the global market. In the field of electrochemical energy storage systems, the research on lithium-ion batteries is mainly focused on ideal nanostructures and nanomaterials with large specific surface area; the cycle life of sodium-ion batteries developed by Korean enterprises is as long as 15 years, which is 3 times higher than that of traditional batteries, and the research on redox flow batteries and supercapacitors is still in its infancy.

Key Wordsenergy storage system (ESS)electrochemical energy storage systemSouth Korea energy storage system
收稿日期: 2020-04-16
ZTFLH:  TK02  
作者简介: 罗 晔(1983),男,硕士,副研究员,主要从事工艺技术的研究,roye526@baosteel.com。

引用本文:

罗晔. 韩国电化学储能系统研发进展[J]. 分布式能源, 2020, 5(3): 29-33.
LUO Ye. Research and Development of Electrochemical Energy Storage System in South Korea[J]. Distributed Energy, 2020, 5(3): 29-33.

链接本文:

http://der.tsinghuajournals.com/CN/10.16513/j.2096-2185.DE.2004011      或      http://der.tsinghuajournals.com/CN/Y2020/V5/I3/29

表1  储能技术对比
图1  ESS在电力系统的应用
[1] PANWAR N L, KAUSHIK S C, KOTHARI S. Role of renewable energy sources in environmental protection: A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1513-1524.
[2] ???????. 2019 ? ????? ???[R]. .
[3] YOON J H, SIM K H. Why is South Korea's renewable energy policy failing? A qualitative evaluation[J]. Energy Policy, 2015, 86: 369-379.
[4] KEEI. ????? ???? ? ??? ??[R]. .
[5] ESS(???????) ????, ?? ? ? ?? 3? ??[R]. .
[6] ESS????33%'???'…? ??? ?? ???? ?[R]. .
[7] YAO L, YANG B, CUI H, et al. Challenges and progresses of energy storage technology and its application in power systems[J]. Journal of Modern Power Systems and Clean Energy, 2016, 4(4): 519-528.
[8] AKINYELE D O, RAYUDU R K. Review of energy storage technologies for sustainable power networks[J]. Sustainable Energy Technologies and Assessments, 2014, 8: 74-91.
[9] ???·ESS??? ??…??????? ?? 2030? 17? ???[R]. . .
[10] LIM B, YOON S, PARK K, et al. Advanced concentration gradient cathode material with two-slope for high-energy and safe lithium batteries[J]. Advanced Functional Materials, 2015, 25(29): 4673-4680.
[11] POSCO News Room, 2017. .
[12] SOLOVEICHIK G L. Flow batteries: Current status and trends[J]. Chemical Reviews, 2015, 115(20): 11533-11558.
[13] PARK S, KIM H. Fabrication of nitrogen-doped graphite felts as positive electrodes using polypyrrole as a coating agent in vanadium redox flow batteries[J]. Journal of Materials Chemistry, 2015, 3(23): 12276-12283.
[14] PARK M, RYU J, KIM Y, et al. Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups: a highly efficient electrocatalyst for all-vanadium redox flow batteries[J]. Energy and Environmental Science, 2014, 7(11): 3727-3735.
[15] KIM S, CHOI J, CHOI C, et al. Pore-size-tuned graphene oxide frameworks as ion-selective and protective layers on hydrocarbon membranes for vanadium redox-flow batteries[J]. Nano Letters, 2018, 18(6): 3962-3968.
[16] MAHMOOD Q, KIM M G, YUN S, et al. Unveiling surface redox charge storage of interacting two-dimensional heteronanosheets in hierarchical architectures[J]. Nano Letters, 2015, 15(4): 2269-2277.
[17] NAKHANIVEJ P, YU X, PARK S K, et al. Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets[J]. Nature Materials, 2019, 18(2): 156-162.
[1] 阚圣钧,魏少雄,赵继钢,张继红. 考虑分时电价的微电网储能容量优化配置[J]. 分布式能源, 2022, 7(2): 44-49.
[2] 何可欣, 马速良, 马壮, 薛澳宇. 储能技术发展态势及政策环境分析[J]. 分布式能源, 2021, 6(6): 45-52.
[3] 耿天翔, 李峰, 马天东, 梁忠豪, 李雅欣, 李建林. 宁夏电网电化学储能需求分析[J]. 分布式能源, 2021, 6(4): 63-69.
[4] 何天贤, 顾凤龙. 锂金属负极的研究策略[J]. 分布式能源, 2021, 6(3): 10-18.
[5] 周云飞, 孟克其劳, 温彩凤, 姜宏伟, 李超峰. 基于模型预测算法的网侧改进直接功率控制策略研究[J]. 分布式能源, 2021, 6(3): 47-54.
[6] 罗定. 基于随机生产模拟的发电系统储能容量优化配置[J]. 分布式能源, 2021, 6(1): 27-34.
[7] 黄阮明,王海群,张铭泽,李灏恩,屈靖雅,赵晶晶. 计及负荷电压静态特性的光储微电网频率控制策略[J]. 分布式能源, 2020, 5(6): 1-6.
[8] 郑开云. 基于超临界二氧化碳循环的电热储能系统[J]. 分布式能源, 2020, 5(5): 43-47.
[9] 冉亮, 郭建华, 袁铁江. 新能源站侧规模化应用储能的电力系统运行模拟[J]. 分布式能源, 2020, 5(3): 1-8.
[10] 张丽, 王海刚, 郭婷婷, 张猛, 马林, 王涵, 许超. 石墨烯在储能领域应用现状及展望[J]. 分布式能源, 2020, 5(3): 9-14.
[11] 张谨奕, 白宁, 李京浩, 王含, 郭霄宇, 韩雨辰, 张玮. 基于Simulink的热泵储电系统动态仿真[J]. 分布式能源, 2020, 5(3): 15-22.
[12] 王冰, 王楠, 田政, 李娜, 周喜超. 美国电化学储能产业政策分析及对我国储能产业发展的启示与建议[J]. 分布式能源, 2020, 5(3): 23-28.
[13] 傅旭, 李富春, 杨欣, 杨攀峰. 基于全寿命周期成本的储能成本分析[J]. 分布式能源, 2020, 5(3): 34-38.
[14] 张锋, 李思儒, 孙谊媊, 郭小龙, 袁铁江, 刘勇. 高源荷比局域电网中光伏电站储能容量配置[J]. 分布式能源, 2020, 5(1): 29-34.
[15] 汪硕承, 谢开贵, 胡博, 曹茂森. 含光热电站的多能源系统混合储能容量优化配置[J]. 分布式能源, 2019, 4(5): 58-66.