Please wait a minute...
分布式能源  2020, Vol. 5 Issue (3): 34-38    DOI: 10.16513/j.2096-2185.DE.2001003
  储能新技术及应用 本期目录 | 过刊浏览 |
基于全寿命周期成本的储能成本分析
傅旭,李富春,杨欣,杨攀峰
中国电力工程顾问集团西北电力设计院有限公司,陕西 西安 710075
Cost Analysis of Energy Storage Based on Life Cycle Cost
FU Xu, LI Fuchun, YANG Xin, YANG Panfeng
Northwest Electric Power Design Institute Co., Ltd., China Power Engineering Consulting Group, Xi'an 710075, Shaanxi Province, China
全文: PDF(1150 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要: 

大规模应用储能技术是提高含可再生能源电网的运行经济性和安全性的有效途径。为了合理评估储能在电网中应用的经济性,采用全生命周期成本方法,根据抽水蓄能电站、压缩空气储能、铅酸电池、钠硫电池、液流电池、锂离子电池等储能成本和技术特性,测算了各类储能的投资、年费用、度电成本,比较了不同利用小时下各类储能的经济性。研究成果表明:抽水蓄能电站度电成本最低,其次是压缩空气储能,电池类储能度电成本最高。

关键词: 储能全寿命周期度电成本抽水蓄能电站压缩空气储能锂离子电池    
Abstract

The large-scale application of energy storage technology is an effective way to improve the economic performance and safety of the power grid containing renewable energy. In order to reasonably evaluate the economy of energy storage in the power grid, the life cycle cost method is adopted, according to the energy storage cost and technical characteristics of pumped storage power station, such as compressed air storage, lead-acid battery, sodium sulfur battery, liquid flow battery, lithium ion battery, etc. The investment, annual cost and electricity cost of various kinds of energy storage are calculated, and the economy of various types of energy storage under different utilization hours is compared. The research results show that the minimum cost of electricity storage for pumped storage power station is the lowest, followed by compressed air energy storage, and the highest energy cost of battery energy storage.

Key Wordsenergy storagelife cycleelectricity costpumped storage power stationcompressed air energy storagelithium ion battery
收稿日期: 2020-01-08
ZTFLH:  TK02  
作者简介: 傅 旭(1976),男,博士,高级工程师,注册咨询工程师,主要从事电力系统规划分析方面的研究工作,fuxu@nwepdi.com;|李富春(1982),男,高级工程师,从事电力系统规划设计研究工作;|杨 欣(1991),女,工程师,从事电力系统规划设计研究工作;|杨攀峰(1962),男,教授级高级工程师,从事电力系统规划设计研究工作。

引用本文:

傅旭, 李富春, 杨欣, 杨攀峰. 基于全寿命周期成本的储能成本分析[J]. 分布式能源, 2020, 5(3): 34-38.
FU Xu, LI Fuchun, YANG Xin, YANG Panfeng. Cost Analysis of Energy Storage Based on Life Cycle Cost[J]. Distributed Energy, 2020, 5(3): 34-38.

链接本文:

http://der.tsinghuajournals.com/CN/10.16513/j.2096-2185.DE.2001003      或      http://der.tsinghuajournals.com/CN/Y2020/V5/I3/34

表1  储能电站参数
表2  各类储能电站的投资比较
表3  各类储能电站的年发电量和度电成本
图1  储能电站度电成本曲线
表4  各类储能电站的年发电量和度电成本(敏感性分析)
图2  储能电站度电成本曲线(敏感性分析)
[1] 娄素华,易林,吴耀武,等. 基于可变寿命模型的电池储能容量优化配置[J]. 电工技术学报,2015, 30(4): 265-271.
[1] LOU Suhua, YI Lin, WU Yaowu, et al. Optimizing deployment of battery energy storage based on lifetime predication[J]. Transactions of China Electrotechnical Society, 2015, 30(4): 265-271.
[2] 孙振新,刘汉强,赵喆,等. 储能经济性研究[J]. 中国电机工程学报,2013, 33(S): 54-58.
[3] 丁明,徐宁舟,林根德,等. 电池储能电站静态功能的研究[J]. 电工技术学报,2012, 27(10): 242-248.
[3] DING Ming, XU Ningzhou, LIN Gende. Static function of the battery energy storage system[J]. Transactions of China Electrotechnical Society, 2012, 27(10): 242-248.
[4] 薛金花,叶季蕾,陶琼,等. 采用全寿命周期成本模型的用户侧电池储能经济可行性研究[J]. 电网技术,2016, 40(8): 2471-2476.
[4] XUE Jinhua, YE Jilei, TAO Qiong, et al. Economic feasibility of user-side battery energy storage based on whole-life-cycle cost model[J]. Power System Technology, 2016, 40(8): 2471-2476.
[5] 赵晶晶,李振坤,朱兰,等. 储能系统在微网中的优化配置与成本分析[J]. 华东电力,2011, 39 (10): 1615-1618.
[5] ZHAO Jingjing, LI Zhenkun, ZHU Lan, et al. Optimal allocation and cost analysis of energy storage system in micro grid. [J]. East China Electric Power, 2011, 39(10): 1615-1618.
[6] 朱永强,郝嘉诚,赵娜,等. 能源互联网中的储能需求、储能的功能和作用方式[J]. 电工电能新技术,2018, 37(2): 69-75.
[6] ZHU Yongqiang, HAO Jiacheng, ZHAO Na, et al. Demands, functions and action manners of energy storage in energy internet[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(2): 69-75.
[7] 闫俊辰. 一种基于“能量”成本的储能技术评价新方法[J]. 储能科学与技术,2019, 8(2): 269-275.
[7] YAN Junchen. An evaluation method of energy storage technologies based on energetic costs[J]. Energy Storage Science and Technology, 2019, 8(2): 269-275.
[8] 李建林,修晓青,吕项羽,等. 储能系统容量优化配置及全寿命周期经济性评估研究综述[J]. 电源学报,2018, 16(4): 1-13.
[8] LI Jianlin, XIU Xiaoqing, LV Xiangyu, et al. Review on capacity optimization configuration and life cycle economic evaluation method for energy storage system[J]. Journal of Power Supply, 2018, 16(4): 1-13.
[9] 王海华,陆冉,曹炜,等. 规模风电并网条件下储能系统参与辅助调峰服务容量配置优化研究[J]. 电工电能新技术,2019, 38(6): 42-49.
[9] WANG Haihua, LU Ran, CAO Wei, et al. Optimal capacity allocation of energy storage system participating auxiliary peak regulation in large-scale wind power integation[J] Advanced Technology of Electrical Engineering and Energy, 2019, 38(6): 42-49.
[10] 苏伟,钟国彬,徐凯琪,等. 储能技术经济性评估方法综述[J]. 广东电力,2019, 32(1): 29-35.
[10] SU Wei, ZHONG Guobin, XU Kaiqi, et al. Review of evaluation method for economy of energy storage technology[J]. Guangdong Electric Power, 2019, 32(1): 29-35.
[11] POONPUN P, JEWELL W T. Analysis of the cost per kilowatt hour to store electricity [J]. IEEE Transactions on Energy Conversion, 2008, 23(2): 529-534.
[12] 刘坚. 储能技术经济性现状及商业化运行障碍[J]. 中国能源,2017, 39(7): 36-40.
[13] 潘福荣,张建赟,周子旺,等. 用户侧电池储能系统的成本效益及投资风险分析[J]. 浙江电力,2019, 38(5): 43-49.
[13] PAN Furong, ZHANG Jianyun, ZHOU Ziwang, et al. Cost-benefit and investment risk analysis of user-side battery energy storage system[J], Zhejiang Electric Power, 2019, 38(5): 43-49.
[14] LI X J, YAO L Z, HUI D. Optimal control and management of large-scale battery energy storage system to mitigate the fluctuation and intermittence of renewable generations[J]. Journal of Modern Power Systems and Clean Energy, 2016, 4(4): 593-603.
[15] LI X J, HUI D, LAI X K. Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations[J]. IEEE Transactions on Sustainable Energy, 2013, 4(2): 464-473.
[16] LEI M Y, YANG Z L, WANG Y B, et al. Design of energy storage control strategy to improve the PV system power quality[C]//IECON2016-42nd Annual Conference of the IEEE Industrial Electronics Society. Florence: IEEE, 2016: 2022-2027.
[17] 单茂华,李陈龙,梁廷婷,等. 用于平滑可再生能源出力波动的电池储能系统优化控制策略(英文)[J]. 电网技术,2014, 38(2): 469-477.
[17] SHAN Maohua, LI Chenlong, LIANG Tingting, et al. A real-time optimal control strategy for battery energy storage system to smooth active output fluctuation of renewable energy sources[J]. Power System Technology, 2014, 38(2): 469-477 (in English).
[1] 阚圣钧,魏少雄,赵继钢,张继红. 考虑分时电价的微电网储能容量优化配置[J]. 分布式能源, 2022, 7(2): 44-49.
[2] 张程翔, 丁 宁, 尹 峰, 邵乔乐, 张江丰, 郑可轲. 新型储能应用场景与商业模式综述[J]. 分布式能源, 2022, 7(1): 54-62.
[3] 何可欣, 马速良, 马壮, 薛澳宇. 储能技术发展态势及政策环境分析[J]. 分布式能源, 2021, 6(6): 45-52.
[4] 张全斌. 基于零碳排放模式的氢气储能应用场景展望[J]. 分布式能源, 2021, 6(4): 56-62.
[5] 耿天翔, 李峰, 马天东, 梁忠豪, 李雅欣, 李建林. 宁夏电网电化学储能需求分析[J]. 分布式能源, 2021, 6(4): 63-69.
[6] 张桂红, 张雨津, 刘飞, 傅旭. 多能互补系统化学储能电站建设需求分析[J]. 分布式能源, 2021, 6(4): 70-76.
[7] 杨玺, 刘士诚, 周炜钦, 黄启祥, 祖雯昕, 屈树慷, 李建林. 锂离子电池建模技术研究[J]. 分布式能源, 2021, 6(4): 77-82.
[8] 李建林, 李雅欣, 郭丽军. 退役动力电池梯次利用发展态势与政策体系研究[J]. 分布式能源, 2021, 6(3): 32-37.
[9] 周云飞, 孟克其劳, 温彩凤, 姜宏伟, 李超峰. 基于模型预测算法的网侧改进直接功率控制策略研究[J]. 分布式能源, 2021, 6(3): 47-54.
[10] 王苏杭, 李建林. 退役动力电池梯次利用研究进展[J]. 分布式能源, 2021, 6(2): 1-7.
[11] 罗定. 基于随机生产模拟的发电系统储能容量优化配置[J]. 分布式能源, 2021, 6(1): 27-34.
[12] 黄阮明,王海群,张铭泽,李灏恩,屈靖雅,赵晶晶. 计及负荷电压静态特性的光储微电网频率控制策略[J]. 分布式能源, 2020, 5(6): 1-6.
[13] 郑开云. 基于超临界二氧化碳循环的电热储能系统[J]. 分布式能源, 2020, 5(5): 43-47.
[14] 冉亮, 郭建华, 袁铁江. 新能源站侧规模化应用储能的电力系统运行模拟[J]. 分布式能源, 2020, 5(3): 1-8.
[15] 张丽, 王海刚, 郭婷婷, 张猛, 马林, 王涵, 许超. 石墨烯在储能领域应用现状及展望[J]. 分布式能源, 2020, 5(3): 9-14.