Please wait a minute...
分布式能源  2020, Vol. 5 Issue (3): 39-46    DOI: 10.16513/j.2096-2185.DE.2004007
  综述 本期目录 | 过刊浏览 |
浮式风力发电机组现状及发展趋势综述
刘晓辉,高人杰,薛宇
中国海洋大学工程学院,山东 青岛 266100
Current Situation and Future Development Trend of Floating Offshore Wind Turbine
LIU Xiaohui, GAO Renjie, XUE Yu
College of Engineering, Ocean University of China, Qingdao 266100, Shandong Province, China
全文: PDF(10193 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要: 

浮式风力发电机组(floating offshore wind turbine,FOWT)通常适用于深海区域(水深大于60 m),由于深海区域比近海区域的风力更强劲、持续,浮式风力发电机组较近海固定式风力发电机组风能利用率更高。浮式风力发电机组的安装不受海床限制,可以最大化利用海上风资源,有利于持续提供稳定的电力能源。目前,浮式风力发电机组在北欧、日本已有应用,全球第一个商业化项目Hywind已于2017年投入运行。另外,全球近80%的可开发风力资源集中在深海区域,未来浮式风力发电机组应用前景广阔。国内对浮式风力发电机组的研究总体上还处于初步阶段,目前尚未有样机的安装及应用。但我国产业链完善,在浮式平台研发、整机设备制造等相关海工领域已有深厚的技术积累,开发浮式风力发电机组技术上没有很大限制。文章介绍了浮式风力发电机组的市场现状和浮式风力发电机组基础、系泊的结构形式,为国内相关从业人员提供参考。

关键词: 浮式风力发电机组(FOWT)海上风电Hywind系泊    
Abstract

Floating offshore wind turbine is generally suitable for deep sea areas (water depths greater than 60 m). Because the wind power in deep sea areas is more powerful and continuous than that in offshore areas, the wind energy utilization of floating wind turbines is higher than that of fixed offshore wind turbines. The installation of floating wind power generators is not restricted by the seabed and can maximize the utilization of offshore wind resources, which is conducive to the continuous provision of stable electric energy. At present, floating wind power generators have been applied in Nordic and Japan, and Hywind, the first commercialized project in the world, has been put into operation in 2017.In addition, nearly 80% of the world's exploitable wind resources are concentrated in the deep sea area, and the future application prospects of floating wind power generation units are promising. Domestic research on floating wind turbine is still in the preliminary stage in general, and there is no prototype installation and application at present. However, China has a perfect industrial chain, and has accumulated technology in the related marine industry fields such as floating platform research and development, complete equipment manufacturing, etc., so there are no great restrictions on the development of floating wind power generation technology. In this paper, the market status of floating wind power generator and the structure form of foundation and mooring of floating wind power generator are introduced, which can provide reference for domestic practitioners.

Key Wordsfloating offshore wind turbine (FOWT)offshore windHywindmooring
收稿日期: 2020-04-13
ZTFLH:  TK83  
基金资助:中国海洋大学筑峰科研基金(861901013159)
作者简介: 刘晓辉(1986),男,博士研究生,中级工程师,研究方向为能源与环保,13605321542@163.com;|高人杰(1986),女,博士研究生,中级工程师,研究方向为海洋可再生能源利用及实用化技术开发;|薛 宇(1962),男,博士生导师,国家特聘专家,主要研究方向为空气动力学及风电智能测控技术。

引用本文:

刘晓辉, 高人杰, 薛宇. 浮式风力发电机组现状及发展趋势综述[J]. 分布式能源, 2020, 5(3): 39-46.
LIU Xiaohui, GAO Renjie, XUE Yu. Current Situation and Future Development Trend of Floating Offshore Wind Turbine[J]. Distributed Energy, 2020, 5(3): 39-46.

链接本文:

http://der.tsinghuajournals.com/CN/10.16513/j.2096-2185.DE.2004007      或      http://der.tsinghuajournals.com/CN/Y2020/V5/I3/39

图1  世界首台全尺寸风力发电机Hywind
表1  全球浮式风力发电机统计
表2  全球投运、在建和在开发浮式海上风电项目(不含10 MW以下项目)
图2  浮式风力发电机组浮体基础类型
图3  多风机浮式基础平台
图4  混合式平台
图5  悬链系泊
图6  张力系泊
图7  半张力系泊
表3  常见锚定系统比较
图8  浮式风力发电全球估计数
图9  日本某浮式风力发电机组开发流程
[1] 欧洲海上风电. 2019年全球海上风电数据出炉[EB/OL]. , 2020-2-22.
[2] Wikipedia. [EB/OL]. 2020-1-27.
[3] DOE. 2018 Offshore Wind Technologies Market Report[J/OL]. , 2019-8.
[4] Wikipedia. [EB/OL]. 2020-3-19.
[5] Carbon Trust. Floating offshore wind: Market and technology review[J/OL]. Carbon Trust, 2015-6.
[6] 邱大洪,王永学. 21世纪海岸和近海工程的发展趋势[J]. 自然科学进展,2000, 10(11): 982-986.
[7] ASTARIZ S, IGLESIAS G. The economics of wave energy: A review[J]. Renewable & Sustainable Energy Reviews, 2015, 45: 397-408.
[8] TIWARI G N, MISHRA R K. Advanced renewable energy sources[M]. London: The Royal Society of Chemistry Publishing, 2012: 422-431.
[9] 张哲,郑崇伟,汪梦西,等. “21世纪海上丝绸之路”的风能和波浪能[J]. 海洋开发与管理,2018(4): 63-66.
[9] ZHANG Zhe, ZHENG Chongwei, WANG Mengxi, et al. Offshore wind energy and wave energy of the ‘21st century maritime silk road’[J]. Ocean Development and Management, 2018(4): 63-66.
[10] 郑崇伟,苏勤,刘铁军. 1988—2010年中国海域波浪能资源模拟及优势区域划分[J]. 海洋学报,2013, 35(3): 104-111.
[10] ZHENG Chongwei, SU Qin, LIU Tiejun. Wave energy resource assessment and dominant area evaluation the China sea from 1988 to 2010[J]. Acta Oceanologica Sinica, 2013, 35(3): 104-111.
[11] OZKOP E, ALTAS I H. Control, power and electrical components in wave energy conversion systems: A review of the technologies[J]. Renewable & Sustainable Energy Reviews, 2017, 67: 106-115.
[12] PéREZ-COLLAZO, C, GREAVES D, IGLESIAS G. A review of combined wave and offshore wind energy[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 141-153.
[13] 罗续业,夏登文. 中国海洋能近海重点区资源特性与评估分析[M]. 北京:海洋出版社,2017
[14] 訚耀保,WATABE T. 海洋波浪能量综合利用[M]. 上海:上海科学技术出版社,2011
[15] 麻常雷,夏登文,王海峰. 国内外海洋能进展及前景展望研究[M]. 北京:海洋出版社,2017
[16] 张中华,王海峰,李拓晨,刘玉新等. 国际海洋能开发利用技术标准与规范研究[M]. 北京:海洋出版社,2016.
[17] 王世明,李泽宇,于涛,等. 多能互补海洋能集成发电技术研究综述[J]. 海洋通报,2019, 38(3): 241-249.
[17] WANG Shiming, LI Zeyu, YU Tao, et al. A review of research on multi-energy complementary ocean energy integrated power generation technology[J]. Marine Science Bulletin, 2019, 38(3): 241-249.
[18] PEREZ-COLLAZO C, GREAVES D, GREGORIO I. A novel hybrid wind-wave energy converter for jacket-frame substructures[J]. Energies, 2018, 11(3): 637.
[19] PEREZ-COLLAZO C, PEMBERTON R, GREAVES D, et al. Monopile-mounted wave energy converter for a hybrid wind-wave system[J]. Energy Conversion and Management, 2019, 199: 111971
[20] KARIMIRAD M, KOUSHAN K. WindWEC: Combining wind and wave energy inspired by hywind and wavestar[C]//International Conference on Renewable Energy Research & Applications. IEEE, 2016.
[21] BORG M, COLLU M, BRENNAN F P. Use of a wave energy converter as a motion suppression device for floating wind turbines[J]. Energy Procedia, 2013, 35: 223-233.
[22] WANG Yapo, ZHANG Lixian, MICHAILIDES C, et al. Hydrodynamic response of a combined wind-wave marine energy structure[J]. Journal of Marine Science and Engineering, 2020, 8: 253.
[23] REN Nianxin, MA Zhe, SHAN Baohua, et al. Experimental and numerical study of dynamic responses of a new combined TLP type floating wind turbine and a wave energy converter under operational conditions[J]. Renewable Energy, 2019. https://doi.org/10.1016/j.renene.2019.11.095
[24] 朱莹. 单桩基础风能-波浪能集成发电结构风浪联合分析[D]. 大连:大连理工大学,2019.
[24] ZHU Ying. Coupled wind and wave response of a combined mono-pile wind turbine and heave-type wave energy converter system[D]. Dalian: Dalian University of Technology, 2019.
[25] 梁姝婷. 风机浮式基础和波浪能浮子运动性能研究[D]. 哈尔滨:哈尔滨工程大学,2015.
[25] LIANG Shuting. Study on motion response of floating wind turbine foundation with a wave-energy floater[D]. Harbin: Harbin Engineering University, 2015.
[26] YUE Minnan, LIU Qingsong, LI Chun, et al. Effects of heave plate on dynamic response of floating wind turbine Spar platform under the coupling effect of wind and wave[J]. Ocean Engineering, 2020, 201: 107103
[27] STOUTENBURG E D, JENKINS N, JACOBSON M Z. Power output variations of co-located offshore wind turbines and wave energy converters in California[J]. Renewable Energy, 2010, 35: 2781-2791.
[28] Fukushima-forward. 浮体式洋上風力発電導入?????[EB/OL]. , 2019-3.
[1] 卿子龙, 卿良华. 海上风电机组智慧型监控管理系统[J]. 分布式能源, 2022, 7(1): 69-73.
[2] 张丽, 王敏, 曹蕃, 金绪良, 周松, 殷爱鸣, 聂晋峰, 董磊. 海上风电涂层防腐型功能助剂研究进展[J]. 分布式能源, 2021, 6(6): 53-58.
[3] 张路娜, 唐宏芬, 张舒翔, 尹男, 赵兴安. 海上风电机组视情维护与备件管理集成优化[J]. 分布式能源, 2021, 6(5): 44-50.
[4] 卿子龙, 孔庆香. 海上风电场智慧型监控管理一体化系统[J]. 分布式能源, 2021, 6(5): 59-63.
[5] 李理, 范玉鹏, 常志明, 姜浩杰. 海洋风电机组防腐蚀技术研究进展[J]. 分布式能源, 2021, 6(5): 51-58.
[6] 汪大洋,刘宗烨,李沛,黄进,曹晶,伋玉聪,周芮冰. 基于模块化多电平矩阵换流器的海上风电分频系统经济性分析[J]. 分布式能源, 2018, 3(2): 16-22.
[7] 仇卫东, 胡君慧, 李琰. 大型海上风电场并网过电压问题及抑制措施研究[J]. 分布式能源, 2016, 1(3): 23-28.
[8] 薛宇, 刘燕. 海上湿气对风力机翼型及叶片气动性能影响研究[J]. 分布式能源, 2016, 1(2): 21-27.