Please wait a minute...
分布式能源  2018, Vol. 3 Issue (2): 39-46    DOI: 10.16513/j.cnki.10-1427/tk.2018.02.006
  本期目录 | 过刊浏览 |
直流配电网经济调度方法研究
邓得政1(),刘畅2,李庚银3
Economic Dispatch Method of DC Distribution Network
DENG Dezheng1,LIU Chang2,LI Gengyin3
1.国网天津东丽供电公司,天津 东丽 300300
2.北京新机场建设指挥部,北京 大兴 102602
3.新能源电力系统国家重点实验室(华北电力大学),北京 昌平 102206
1. State Grid Tianjin Power Dongli Power Supply Branch, Dongli District, Tianjin 300300, China
2. Beijing New Airport Construction Headquarters, Daxing District, Beijing 102602, China
3. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Changping District, Beijing 102206, China
全文: PDF(4007 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要: 

直流配电系统具有可控性好、损耗低、电能质量高、输电容量大等特点,适宜于分布式电源的多点接入,是配电领域新的发展方向。经济调度是直流配电系统发展的关键技术之一。首先,在分析直流配网特性的基础上,建立基于日前计划和实时调度的直流配网多时间尺度经济调度模型,通过2个阶段的协调优化来实现直流配网的经济调度;然后,结合具体算例,利用改进粒子群算法对该模型进行求解;最后,优化结果验证了所提经济调度模型的正确性和有效性。

关键词: 直流配网经济调度多时间尺度    
Abstract

DC distribution system is characterized by good controllability, low loss, high power quality and large transmission capacity. It is suitable for multipoint access of distributed generations, and it is the new development direction of distribution system. Economic dispatch is one of the key technologies for the development of DC distribution system. Based on the analysis of the characteristics of DC distribution network, a multi-time scales-based economic dispatch model is firstly established for DC distribution network, which is divided into two stages: day-ahead optimal scheduling and real-time scheduling. Through the coordination and optimization of two stages, the economic dispatch of DC distribution network is realized. Then, a specific example of the model is solved by the improved particle swarm optimization (IPSO) algorithm. Finally, the correctness and effectiveness of the proposed economic dispatch model has been verified through the optimization results.

Key WordsDC distribution networkeconomic dispatchmulti-time scales
收稿日期: 2018-01-02

引用本文:

邓得政,刘畅,李庚银. 直流配电网经济调度方法研究[J]. 分布式能源, 2018, 3(2): 39-46.
DENG Dezheng,LIU Chang,LI Gengyin. Economic Dispatch Method of DC Distribution Network[J]. Distributed Energy, 2018, 3(2): 39-46.

链接本文:

http://der.tsinghuajournals.com/CN/10.16513/j.cnki.10-1427/tk.2018.02.006      或      http://der.tsinghuajournals.com/CN/Y2018/V3/I2/39

图1  直流配网经济调度结构图
图2  直流配网拓扑结构
表1  配网中分布式电源相关系数
表2  各直流微网中分布式电源的配置
表3  各微源的排放系数及折算成本
表4  峰平谷分时电价及燃料价格
图3  可再生能源发电、各节点负荷短期与超短期功率预测曲线
图4  直流配网冷负荷需求和微燃机输出功率
图5  直流配网日前优化结果
图6  运行成本及网损曲线
图7  各微网与配网交互功率曲线
图8  目标1下各单元调整出力
图9  目标1下实时调度结果
图10  目标2下各单元调整出力
图11  目标2下实时调度结果
[1] 郑欢,江道灼,杜翼. 交流配电网与直流配电网的经济性比较[J]. 电网技术,2013, 37(12): 3368-3374.
[1] ZHENG Huan, JIANG Daozhuo, DU Yi. Economic comparison of AC and DC distribution system[J]. Power System Technology, 2013, 37(12): 3368-3374.
[2] 李庚银,吕鹏飞,李广凯,等. 轻型高压直流输电技术的发展与展望[J]. 电力系统自动化,2003, 27(4): 77-81.
[2] LI Gengyin, Lü Pengfei, LI Guangkai, et al. Development and prospects for HVDC light[J]. Automation of Electric Power Systems, 2003, 27(4): 77-81.
[3] SANNINO A, POSTIGLIONE G, BOLLEN M. Feasibility of a DC network for commercial facilities[J]. IEEE Transactions on Industry Applications, 2003, 39(5): 1499-1507.
[4] 汤广福,贺之渊,庞辉. 柔性直流输电工程技术研究、应用及发展[J]. 电力系统自动化,2013, 37(15): 3-14.
[4] TANG Guangfu, HE Zhiyuan, PANG Hui. Research, application, and development of VSC-HVDC engineering technology[J]. Automation of Electric Power Systems, 2013, 37(15): 3-14.
[5] 史海旭,孙凯,肖曦,等. 面向中压直流配电网的光伏发电接入技术综述与分析[J]. 分布式能源,2016, 1(3) : 1-9.
[5] SHI Haixu, SUN Kai, XIAO Xi, et al. An overview and analysis of photovoltaic power integration technology for medium voltage DC distribution network[J]. Distributed Energy, 2016, 1(3) : 1-9.
[6] 温家良,吴锐,彭畅,等. 直流电网在中国的应用前景分析[J]. 中国电机工程学报,2012, 32(13): 7-12, 185.
[6] WEN Jialiang, WU Rui, PENG Chang, et al. Analysis of DC grid prospects in China[J]. Proceedings of the CSEE, 2012, 32(13): 7-12, 185.
[7] 宋强,赵彪,刘文华,等. 智能直流配电网研究综述[J]. 中国电机工程学报,2013, 33(25): 9-19, 5.
[7] SONG Qiang, ZHAO Biao, LIU Wenhua, et al. An overview of research on smart DC distribution power network[J]. Proceedings of the CSEE, 2013, 33(25): 9-19, 5.
[8] ELSAYED A T, MOHAMED A A, MOHAMMED O A. DC microgrids and distribution systems: an overview[J]. Electric Power Systems Research, 2015(119): 407-417.
[9] BOROYEVICH D, CVETKOVIC I, DONG D, et al. Future electronic power distribution systems: a contemplative view[C]//IEEE 12th International Conference on Optimization of Electrical and Electronic Equipment. Basov, Russia, 2010: 1369-1380.
[10] SALEHI V, MOHAMED A, MAZLOOMZADEH A, et al. Laboratory-based smart power system, part I: design and system development[J]. IEEE Transactions on Smart Grid, 2012, 3(3): 1394-1404.
[11] ALEX H, MARIESA L C, GERALD T H, et al. The future renewable electric energy delivery and management system: the energy internet[J]. Proceedings of the IEEE, 2011, 99(1): 133-148.
[12] 范松丽,苑仁峰,艾芊,等. 欧洲超级电网计划及其对中国电网建设启示[J]. 电力系统自动化,2015, 39(10): 6-15.
[12] FAN Songli, YUAN Renfeng, AI Qian, et al. European supergrid project and its enlightenment to China[J]. Automation of Electric Power Systems, 2015, 39(10): 6-15.
[13] 黄逊青. 日本住宅直流供电技术进展[J]. 家电科技,2011(6): 36.
[14] 马骏超,江全元,余鹏,等. 直流配电网能量优化控制技术综述[J]. 电力系统自动化,2013, 37(24): 89-96.
[14] MA Junchao, JIANG Quanyuan, YU Peng, et al. Survey on energy optimized control technology in DC distribution netwotk[J]. Automation of Electric Power Systems, 2013, 37(24): 89-96.
[15] 牛铭,黄伟,郭佳欢,等. 微网并网时的经济运行研究[J]. 电网技术,2010, 34(11): 38-42.
[15] NIU Ming, HUANG Wei, GUO Jiahuan, et al. Research on economic operation of grid-connected microgrid[J]. Power System Technology, 2010, 34(11): 38-42.
[16] 张美霞,陈洁,杨秀,等. 微网经济运行研究综述[J]. 华东电力,2012, 40(9): 1480-1485.
[16] ZHANG Meixia, CHEN Jie, YANG Xiu, et al. Research review of microgrid economic operation[J]. East China Electric Power, 2012, 40(9): 1480-1485.
[17] 郭思琪,袁越,张新松,等. 多时间尺度协调控制的独立微网能量管理策略[J]. 电工技术学报,2014, 29(2): 122-129.
[17] GUO Siqi, YUAN Yue, ZHANG Xinsong, et al. Energy management strategy of isolated microgrid based on multi-time scale coordinated control[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 122-129.
[18] RIFFONNEAU Y, BACHA S, BARRUEL F, et al. Optimal power flow management for grid connected PV systems with batteries[J]. IEEE Transactions on Ustainable Energy, 2011, 2(3): 309-320.
[19] 邓得政. 直流配网能量管理与优化运行研究[D]. 北京:华北电力大学,2016.
[19] DENG Dezheng. Research on energy management and optimal operation of DC distribution system[D]. Beijing: North China Electric Power University, 2016.
[20] ROUZBEHI K, MIRANIAN A, LUNA A, et al. A generalized voltage droop strategy for control of multi-terminal DC grids[C]//IEEE Energy Conversion Congress and Exposition. Denver, America: IEEE, 2013: 59-64.
[21] 龚纯,王正林. 精通Matlab最优化计算[M]. 北京:电子工业出版社,2012: 306-309.
[1] 刘瑞宽, 彭虹桥, 余浩, 彭穗, 许亮, 黄欣. 风火打捆送出系统静态安全域边界性质分析[J]. 分布式能源, 2020, 5(1): 16-21.
[2] 鹿婷,贾继超,彭晓涛. 一种考虑经济调度的风电场储能控制策略[J]. 分布式能源, 2019, 4(3): 40-49.
[3] 张璐, 丛鹏伟, 许彪, 余顺江, 李欢林. 基于区域划分的交直流混联配电网潮流计算方法[J]. 分布式能源, 2018, 3(6): 47-53.
[4] 刘永前, 马远驰. 基于场景预测的风电场经济调度模型[J]. 分布式能源, 2016, 1(1): 14-21.