考虑负荷静态特性的主动配电网多目标调压策略

吴旭,汤庆峰,赵天阳

分布式能源 ›› 2017, Vol. 2 ›› Issue (4) : 47-52.

PDF(1025 KB)
PDF(1025 KB)
分布式能源 ›› 2017, Vol. 2 ›› Issue (4) : 47-52. DOI: 10.16513/j.cnki.10-1427/tk.2017.04.008
应用技术

考虑负荷静态特性的主动配电网多目标调压策略

作者信息 +

Multi-Objective Voltage Regulation Method for Active Distribution Network Considering Load Static Characteristics

Author information +
文章历史 +

摘要

To mitigate the adverse effects of large-scale distributed generation on the voltage of distribution network, this paper proposes a multi-objective voltage control method under the active distribution scheme. With considering the load static characteristics of active distribution system, this paper analyzes the impact of load characteristics on the active distribution system operation. Further, this paper constructs the voltage control model to minimize the clean energy curtailment, the voltage profile derivation, and the active power losses, with taking the active power output of distribution generation and grid-connected voltage as decision-making object and considering the distribution network security operation constraint. Then, this paper uses the improved parallel multi-objective differential evolution algorithm to solve the model. Base on the simulation carried out on the modified IEEE-33 bus test system, the effectiveness of the proposed model and algorithm is demonstrated, and the impact of load static characteristics on the voltage regulation is discussed.

关键词

主动配电网 / 分布式电源 / 调压 / 多目标差分进化 / active distribution network / distribution generation / voltage regulation / multi-objective differential evolution

引用本文

导出引用
吴旭, 汤庆峰, 赵天阳, . Multi-Objective Voltage Regulation Method for Active Distribution Network Considering Load Static Characteristics[J]. 分布式能源. 2017, 2(4): 47-52 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.04.008
[J]. Distributed Energy Resources. 2017, 2(4): 47-52 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.04.008

参考文献

[1]
ZENG M, DUAN J, WANG L, et al. Orderly grid connection of renewable energy generation in China: management mode, existing problems and solutions[J]. Renewable and Sustainable Energy Reviews, 2015(41): 14-28.
[2]
刘念张清鑫李小芳. 基于核函数极限学习机的分布式光伏短期功率预测[J]. 农业工程学报2014, 30(4): 152-159.
LIU Nian, ZHANG Qingxin, LI Xiaofang. Distributed photovoltaic short-term power output forecasting based on extreme learning machine with kernel[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(4): 152-159.
[3]
AI Q, WANG X, HE X. The impact of large-scale distributed generation on power grid and microgrids[J]. Renewable Energy, 2014(62): 417-423.
[4]
HERNÁNDEZ J C, RUIZ-RODRIGUEZ F J, JURADO F. Technical impact of photovoltaic-distributed generation on radial distribution systems: Stochastic simulations for a feeder in Spain[J]. International Journal of Electrical Power & Energy Systems, 2013(50): 25-32.
[5]
JUNG J, ONEN A, RUSSELL K, et al. Local steady-state and quasi steady-state impact studies of high photovoltaic generation penetration in power distribution circuits[J]. Renewable and Sustainable Energy Reviews, 2015(43): 569-583.
[6]
TREBOLLE D, HALLBERG P, LORENZ G, et al. Active distribution system management[C]//22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), Beijing, 2013.
[7]
赵波王财胜周金辉,等. 主动配电网现状与未来发展[J]. 电力系统自动化2014, 38(18): 125-135.
ZHAO Bo, WANG Caisheng, ZHOU Jinhu, et al. Present and future development trend of active distribution network[J]. Automation of Electric Power Systems, 2014, 38(18): 125-135.
[8]
GABASH A, LI P. Active-reactive optimal power flow in distribution networks with embedded generation and battery storage[J]. IEEE Transactions on Power Systems, 2012, 27(4): 2026-2035.
[9]
VALVERDE G, VAN CUTSEM T. Model predictive control of voltages in active distribution networks[J]. IEEE Transactions on Smart Grid, 2013, 4(4): 2152-2161.
[10]
刘一兵吴文传张伯明,等. 基于有功无功协调优化的主动配电网过电压预防控制方法[J]. 电力系统自动化2014, 38(9): 184-191.
LIU Yibing, WU Wenchuan, ZHANG Boming, et al. Overvoltage preventive control method based on active and reactive power coordinated optimization in active distribution network[J]. Automation of Electric Power Systems, 2014, 38(9): 184-191.
[11]
李安曹杰许彬,等. 计及静态负荷模型的配电网重构[J]. 武汉大学学报:工学版2014, 47(6): 810-815.
LI An, CAO Jie, XU Bin, et al. Distribution networks reconfiguration considering static load model[J]. Engineering Journal of Wuhan University, 2014, 47(6): 810-815.
[12]
TAYLOR C W. Power system voltage stability[M]. New York, USA: McGraw-Hill, 1994.
[13]
朱星阳张建华刘文霞,等. 考虑负荷电压静特性的含分布式电源的配电网潮流计算[J]. 电网技术2012, 36(2): 217-223.
ZHU Xingyang, ZHANG Jianhua, LIU Wenxia, et al. Power flow calculation of distribution system with distributed generation considering static load characteristics[J]. Power System Technology, 2012, 36(2): 217-223.
[14]
CAGNANO A, DE TUGLIE E, LISERRE M, et al. Online optimal reactive power control strategy of PV inverters[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10): 4549-4558.
[15]
MUSRRAT A, PATRICK S, MILLIE P. An efficient differential evolution based algorithm for solving multi-objectiveoptimization problems[J]. European Journal of Operational Research, 2012(217): 404-416.
[16]
徐昆. 群智能算法及其并行计算技术的研究与应用[D]. 济南:山东大学,2014.
XU Kun. Research and application of swarm intelligence algorithm and parallel computation technology[D]. Jinan: Shandong University, 2014.
[17]
BREST J, GREINER S, BoŠKOVIĆ B, et al. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 646-65
[18]
刘文霞赵天阳邱威,等. 基于闭环供应链的集中性充 换电系统运营优化[J]. 中国电机工程学报2014, 34(22): 3732-3742.
LIU Wenxia, ZHAO Tianyang, QIU Wei, et al. Operation optimization of centralized battery swap charging system based on closed-loop supply chain[J]. Proceedings of the CSEE, 2014, 34(22): 3732-3742.
[19]
KAMH M Z, IRAVANI R. A sequence frame-based distributed slack bus model for energy management of active distribution networks[J]. IEEE Transactions on Smart Grid, 2012, 3(2): 828-836.

编辑: 谷子
PDF(1025 KB)

Accesses

Citation

Detail

段落导航
相关文章

/