微电网电池储能消纳弃风优化模型

杨效嘉,杨俊友

分布式能源 ›› 2018, Vol. 3 ›› Issue (6) : 25-30.

PDF(1040 KB)
PDF(1040 KB)
分布式能源 ›› 2018, Vol. 3 ›› Issue (6) : 25-30. DOI: 10.16513/j.cnki.10-1427/tk.2018.06.004
有源配电网运行分析与控制

微电网电池储能消纳弃风优化模型

作者信息 +

Optimization Model of Wind Power Consumption by Energy Storage in Micro-Grid

Author information +
文章历史 +

摘要

随着风电渗透率在电力系统中的不断增大,风电无法并网的现象越发严重,弃风问题亟待解决。针对储能系统如何配合电网消纳弃风问题,建立多源储能电站优化调度模型。模型以系统运行成本最小为目标,相比于其他调度模型,其改进之处在于增加弃风成本和蓄电池运行成本,量化了弃风经济损失和蓄电池损耗。采用Matlab/Simulink仿真软件,通过改进粒子群优化算法对调度模型进行优化求解,对比分析配置储能装置前后系统的经济性。仿真结果表明配置蓄能电池后,各发电机组能灵活地参与电力系统调度,能有效提升系统风电消纳能力,降低弃风电量,具有良好的经济性。

Abstract

With the increasing of wind power penetration in the power system, the phenomenon that wind power cannot be connected to the grid becomes more and more serious, and the problem of wind abandonment needs to be solved urgently. Aiming at the problem of how the energy storage system cooperates with the abandonment of wind in the power grid, this paper builds up an optimal scheduling model including multi source and energy storage power station. The proposed model aims at the minimum running cost of the system. Compared with other scheduling models, the improvement of the model is to increase the cost of wind abandonment and battery operation, and quantify the economic loss of wind abandonment and battery loss. Matlab/Simulink simulation software is used to optimize the scheduling model through improved particle swarm optimization algorithm, and the economy of the system before and after energy storage device configuration is compared and analyzed. Simulation results show that after the energy storage battery is configured, each generator set can flexibly participate in the power system scheduling, effectively improve the wind power consumption capacity of the system, and reduce the abandoned wind power, which has good economic benefits.

关键词

风电消纳 / 电储能 / 微电网 / 弃风 / 成本最小

Key words

wind power consumption / electric energy storage / micro-grid / wind curtailment / minimum cost

引用本文

导出引用
杨效嘉, 杨俊友. 微电网电池储能消纳弃风优化模型[J]. 分布式能源. 2018, 3(6): 25-30 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.06.004
Xiaojia YANG, Junyou YANG. Optimization Model of Wind Power Consumption by Energy Storage in Micro-Grid[J]. Distributed Energy Resources. 2018, 3(6): 25-30 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.06.004

参考文献

[1]
KATIRAEI F, IRAVANI M R. Power management strategies for a microgrid with multiple distributed generation units[J]. IEEE Transactions on Power Systems, 2006, 21(4): 1821-1831.
[2]
LIU Chunyang, WANG Xiuli, LIU Shimin, et al. Economic dispatch model considering battery lifetime for microgrid[J]. Electric Power Automation Equipment, 2015, 35(10): 29-36.
刘春阳,王秀丽,刘世民,等. 计及蓄电池使用寿命的微电网经济调度模型[J]. 电力自动化设备2015, 35(10): 29-36.
[3]
HU Luping, HU Zijie, ZHANG Zhen, et al. Hybrid energy storage capacity optimization method considering storage battery life[J]. Electrical & Energy Management Technology, 2016(16): 83-88.
胡路苹,胡子杰,张震,等. 考虑蓄电池使用寿命的混合储能容量优化配置方法[J]. 电器与能效管理技术2016(16): 83-88.
[4]
XIANG Yupeng, WEI Zhinong, SUN Guoqiang, et al. Life cycle cost based optimal configuration of battery energy storage system in distribution network[J]. Power System Technology, 2015, 39(1): 264-270.
向育鹏,卫志农,孙国强,等. 基于全寿命周期成本的配电网蓄电池储能系统的优化配置[J]. 电网技术2015, 39(1): 264-270.
[5]
WANG Chengshan, YU Bo, XIAO Jun, et al. Sizing of energy storage systems for output smoothing of renewable energy systems[J]. Proceedings of the CSEE, 2012, 32(16): 1-8.
王成山,于波,肖峻,等. 平滑可再生能源发电系统输出波动的储能系统容量优化方法[J]. 中国电机工程学报2012, 32(16): 1-8.
[6]
易江腾,陈浩,郭庆红. 大容量电池储能技术及其电网应用前景[J]. 大众用电2018(8): 3-5.
[7]
ZOU Jin, LAI Xu, WANG Ningbo. Mitigation of wind curtailment by coordinating with pumped storage[J]. Power System Technology, 2015, 39(9): 2472-2477.
邹金,赖旭,汪宁渤. 以减少电网弃风为目标的风电与抽水蓄能协调运行[J]. 电网技术2015, 39(9): 2472-2477.
[8]
TIAN Chongyi, ZHANG Chenghui, LI Ke, et al. Composite energy storage technology with compressed air energy storage in microgrid and its cost analysis[J]. Automation of Electric Power Systems, 2015, 39(10): 36-40.
田崇翼,张承慧,李坷,等. 含压缩空气储能的微电网复合储能技术及其成本分析[J]. 电力系统自动化2015, 39(10): 36-40.
[9]
JIANG Quanyuan, GONG Yuzhong. Review of wind power integration control with energy storage technology[J]. Power System Technology, 2015, 39(12): 3360-3368.
江全元,龚裕仲. 储能技术辅助风电并网控制的应用综述[J]. 电网技术2015, 39(12): 3360-3368.
[10]
LIANG Chong, GAO Heng, YAN Xu, et al. Control strategy for wind power integration based on energy demand respond and distributed energy storage[J]. Distributed Energy, 2018, 3(2): 58-62.
梁翀,高亨,严旭,等. 基于能源需求响应和分布式储能的风电并网调节方法[J]. 分布式能源2018, 3(2): 58-62.
[11]
LYU Quan, LI Limg, ZHU Quansheng, et al. Comparison of coal-saving effect and national economic indices of three feasible curtailed wind power accommodating strategies[J]. Automation of Electric Power Systems, 2015, 39(7): 75-83.
吕泉,李玲,朱全胜,等. 三种弃风消纳方案的节煤效果与国民经济性比较[J]. 电力系统自动化2015, 39(7): 75-83.
[12]
WANG He, ZHUANG Guanqun, LI Guoqing, et al. Optimized control of wind power consumption based on regenerative electric boiler and energy storage system[J]. Distributed Energy, 2016, 1(2): 1-7.
王鹤,庄冠群,李国庆,等. 蓄热式电锅炉融合储能的风电消纳优化控制[J]. 分布式能源2016, 1(2): 1-7.
[13]
NGUYEN N P D, PHAM T T H, BACHA S, et al. Optimal operation for a wind-hydro power plant to participate to an ciliary services[C]//Proceedings of IEEE International Conference on Industrial Technology. Gippsland, VIC, Australia: IEEE, 2009: 10661290.
[14]
GAO Ciwei, WU Tianying, HE Ye. Generation and transmission coordinated planning considering wind power integration[J]. Automation of Electric Power Systems, 2012, 36(22): 30-35.
高赐威,吴天婴,何叶. 考虑风电接入的电源电网协调规划[J]. 电力系统自动化2012, 36(22): 30-35.
[15]
叶季蕾,薛金花,陶琼,等. 面向电力系统应用的储能技术/经济性分析研究[J]. 电力电网2017, 36(17): 20-28.
[16]
CHENG Yuxu. Research and realization of microgrid optimal energy dispatch based on improved particle swarm algorithm[D]. Changsha: Central South University, 2013.
程宇旭. 基于改进粒子群算法的微电网能量优化调度研究及实现[D]. 长沙:中南大学,2013.

编委: 谷子
PDF(1040 KB)

Accesses

Citation

Detail

段落导航
相关文章

/