考虑分布式电源随机性的配电网综合资源规划

陈皓勇,王增煜,丘子岳

分布式能源 ›› 2018, Vol. 3 ›› Issue (6) : 54-59.

PDF(959 KB)
PDF(959 KB)
分布式能源 ›› 2018, Vol. 3 ›› Issue (6) : 54-59. DOI: 10.16513/j.cnki.10-1427/tk.2018.06.008
有源配电网优化规划

考虑分布式电源随机性的配电网综合资源规划

作者信息 +

Integrated Resource Planning for Distribution Network With Stochastic Distributed Generation

Author information +
文章历史 +

摘要

近年来,随着分布式电源与电力需求侧响应的快速发展,与其相关的配电网规划问题的重要性也日益增大。建立基于分布式电源及需求侧响应的配电网综合资源规划的数学模型,考虑了风电出力的随机性,并采用混合智能算法进行求解,旨在求得系统可靠性和经济性最高的配电网规划方案。在选取优化的目标函数时,同时考虑了多个方面的影响因素,包括电力系统网损费用、分布式电源的投资费用和运行费用、考虑需求侧响应的可中断负荷补偿费用、分布式电源引入后节约的购电费用、优化后产生的环境效益等;采用基于支持向量机和粒子群算法的混合智能算法对分布式电源进行规划。最后,以我国某地区实际配电网作为算例进行计算,验证所提算法对系统可靠性和经济性方面的改善作用。

Abstract

With the fast development of distributed generation (DG) and demand response (DR), the issue of distribution network planning becomes increasingly important. The mathematical model of integrated resource planning for distribution network considering DG and DR is established. The stochasticity of wind power is considered, and a hybrid intelligent algorithm is used to solve the problem, aiming to obtain the distribution network planning scheme with the highest system reliability and economy. When choosing the optimal objective function, many factors are considered at the same time, including the network loss cost of power system, the investment cost and operating cost of DG, the interruptible load compensation cost considering DR, the saving of electricity purchase after introduction of DG, the environmental benefits after optimization, etc. The hybrid intelligent algorithm based on support vector machine and particle swarm optimization algorithm are adopted for the DG planning. Finally, an actual distribution network in China is taken as an example to verify the improvement effect of the proposed algorithm on system reliability and economy.

关键词

综合资源规划 / 配电网规划 / 分布式电源 / 需求侧响应 / 混合智能算法

Key words

integrated resource planning / distribution network planning / distributed generation (DG) / demand response (DR) / hybrid intelligent algorithm

引用本文

导出引用
陈皓勇, 王增煜, 丘子岳. 考虑分布式电源随机性的配电网综合资源规划[J]. 分布式能源. 2018, 3(6): 54-59 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.06.008
Haoyong CHEN, Zengyu WANG, Ziyue QIU. Integrated Resource Planning for Distribution Network With Stochastic Distributed Generation[J]. Distributed Energy Resources. 2018, 3(6): 54-59 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.06.008

参考文献

[1]
WANG Jian, LI Xingyuan, QIU Xiaoyan. Power system research on distributed generation penetration[J]. Automation of Electric Power Systems, 2005, 29(24): 90-97.
王建,李兴源,邱晓燕. 含有分布式发电装置的电力系统研究综述[J]. 电力系统自动化2005, 29(24): 90-97.
[2]
DENG Wei, LI Xinran, LIU Zhiyong, et al. Comprehensive optimal allocation of intermittent distributed generation considering reactive power compensation[J]. Proceedings of the CSEE, 2012, 32(10): 12, 80-88.
邓威,李欣然,刘志勇,等. 考虑无功补偿影响因素的间歇性分布式电源综合优化配置[J]. 中国电机工程学报2012, 32(10): 12, 80-88.
[3]
ZHANG Shenxi, CHENG Haozhong, XING Haijun, et al. Review of DG planning considering uncertainties for distribution network[J]. Electric Power Automation Equipment, 2016, 36(8): 1-9.
张沈习,程浩忠,邢海军,等. 配电网中考虑不确定性的分布式电源规划研究综述[J]. 电力自动化设备2016, 36(8): 1-9.
[4]
WANG Shouxiang, WANG Hui, CAI Shengxia. A review of optimization allocation of distributed generations embedded in power grid[J]. Automation of Electric Power Systems, 2009, 33(18): 110-115.
王守相,王慧,蔡声霞. 分布式发电优化配置研究综述[J]. 电力系统自动化2009, 33(18): 110-115.
[5]
FU Xueqian, CHEN Haoyong, LIU Guote, et al. Power quality comprehensive evaluation method for distributed generation[J]. Proceedings of the CSEE, 2014, 34(25): 4270-4276.
付学谦,陈皓勇,刘国特,等. 分布式电源电能质量综合评估方法[J]. 中国电机工程学报2014, 34(25): 4270-4276.
[6]
ZHOU Fuqiu, WANG Juan. Situations and suggestions of national DSM work[J]. Power Demand Side Management, 2015, 17(2): 1-4.
周伏秋,王娟. 我国电力需求侧管理工作面临的形势及建议[J]. 电力需求侧管理2015, 17(2): 1-4.
[7]
GAO Ciwei, CHEN Xihan, CHEN Jianghua, et al. Measures and application of China's demand response[J]. Power Demand Side Management, 2013, 15(1): 1-4, 6.
高赐威,陈曦寒,陈江华,等. 我国电力需求响应的措施与应用方法[J]. 电力需求侧管理2013, 15(1): 1-4, 6.
[8]
ZHANG Zhichang, CHEN Jingsheng, LI Bin, et al. Present situation and development tendency of standardization demand response information of exchange in China[J]. Power System Technology, 2018, 42(4): 1183-1190.
张志昌,陈京生,李彬,等. 我国需求响应信息交换标准化现状及发展趋势[J]. 电网技术2018, 42(4): 1183-1190.
[9]
XU Jianwei, AN Yunzhan. Research on access point selection and constant capacity of distributed power supply access to distribution network[J]. Electric Engineering, 2018(20): 81-83.
许健伟,安允展. 分布式电源接入配电网的接入点选择和定容研究[J]. 电工技术2018(20): 81-83.
[10]
ZHANG Yusen, KONG Xiangyu, SUN Bowei, et al. Multi-time scale home energy management strategy based on electricity demand response[J]. Power System Technology, 2018, 42(6): 1811-1819.
张禹森,孔祥玉,孙博伟,等. 基于电力需求响应的多时间尺度家庭能量管理优化策略[J]. 电网技术2018, 42(6): 1811-1819.
[11]
YAN Huaguang, CHEN Songsong, ZHONG Ming, et al. Research and design of demand side energy efficiency management and demand response system[J]. Power System Technology, 2015, 39(1): 42-47.
闫华光,陈宋宋,钟鸣,等. 电力需求侧能效管理与需求响应系统的研究与设计[J]. 电网技术2015, 39(1): 42-47.
[12]
ZHANG Jing, WANG Ting, LI Bin. Research on technical standardization for electric demand response[J]. Proceedings of the CSEE, 2014, 34(22): 3623-3629.
张晶,王婷,李彬. 电力需求响应技术标准化研究[J]. 中国电机工程学报2014, 34(22): 3623-3629.
[13]
LI Dan, CHEN Haoyong. Algorithm research of load flow of distribution network with different distributed generations[J]. East China Electric Power, 2011, 39(1): 76-80.
李丹,陈皓勇. 分布式电源混合并网的配电网潮流算法研究[J]. 华东电力2011, 39(1): 76-80.
[14]
宋平. 需求响应在国外电力削峰填谷中的应用[J]. 上海节能2004(2): 47-50.
[15]
CHARNES A, COOPER W W. Chance-constrained pro-gramming[J]. Management Science, 1959, 6(1): 73-79.

基金

国家重点基础研究发展计划项目(973项目)(2016YFB0900102)

编委: 谷子
PDF(959 KB)

Accesses

Citation

Detail

段落导航
相关文章

/