Wind Turbine Blade Stall Control Technology at Low Air Density

LIU Yang

Distributed Energy ›› 2020, Vol. 5 ›› Issue (1) : 60-64.

PDF(1276 KB)
PDF(1276 KB)
Distributed Energy ›› 2020, Vol. 5 ›› Issue (1) : 60-64. DOI: 10.16513/j.2096-2185.DE.1901112
Application Technology

Wind Turbine Blade Stall Control Technology at Low Air Density

Author information +
History +

Abstract

For wind farms with low air density, when the wind turbine is running near the rated wind speed, the blade roots will stall and seriously affect the stable operation of the unit. In order to solve the problem of blade stall, this paper proposes two solutions for the advance pitching strategy and the root canal root can be installed. At the same time, the two schemes are verified by three-dimensional numerical simulation. The results show that the two methods can reduce the surface separation of the blade. The advanced pitch control strategy can increase the power of the unit by about 1.78%, while the root box can increase the power of the unit by about 2.14%, that is to say the effect of installing the root box is more obvious in the improvement effect. But for the built wind field, from the economical consideration, the effect of using the advanced pitch control strategy to solve the blade stall problem is more effective.

Key words

wind turbine / root modification / pitch / stall

Cite this article

Download Citations
Yang LIU. Wind Turbine Blade Stall Control Technology at Low Air Density[J]. Distributed Energy Resources. 2020, 5(1): 60-64 https://doi.org/10.16513/j.2096-2185.DE.1901112

References

[1]
YU Guohua. Research on stall of horizontal axis wind turbine blades[D]. Shanghai: Shanghai Jiaotong University, 2013.
俞国华. 水平轴风力机叶片失速问题研究[D]. 上海:上海交通大学,2013.
[2]
BUTTERFIELD C P. Aerodynamic pressure and flow-visualization measurement from arotating wind turbine blade[R]. Solar Energy Research Inst., Golden, co(USA), 1988.
[3]
LEISHMAN J G, BEDDOES T S. A generalized method for unsteady airfoil behavior and dynamic stall using the indicial method[C]//42nd Annual Forum of the American Helicopter Society, Washington DC, 1986.
[4]
XING Zuoxia, CHEN Lei, SUN Hongli. Strategies study of individual variable pitch control[J]. Proceedings of the CSEE, 2011, 31(26): 131-138.
邢作霞,陈雷,孙宏利,等. 独立变桨距控制策略研究[J]. 中国电机工程学报2011, 31(26): 131-138.
[5]
YAO Xingjia, MA Jia, GUO Qingding. Individual pitch control of wind turbine based on fuzzy control[J]. Renewable Energy Resources, 2011, 29(6): 34-38
姚兴佳,马佳,郭庆鼎. 基于模糊控制的风电机组独立变桨距控制[J]. 可再生能源2011, 29(6): 34-38.
[7]
LIU Tingrui, YU Ziqing. Nonlinear flutter servo aeroelastic intelligent control of wind turbine blade stall[J]. Journal of Central South University (Natural Science Edition), 2016, 47(10): 3562-3569.
刘廷瑞,于子晴. 风力机叶片失速非线性颤振伺服气弹智能控制[J]. 中南大学学报(自然科学版), 2016, 47(10): 3562-3569.
[8]
CHEN Yan, WANG Xiaohu, LIU Xiong, et al. Analysis of steady stall aerodynamic damping of horizontal axis wind turbine blade[J]. ACTA Energiae Solaris Sinica, 2011, 32(9): 1294-1302.
陈严,王小虎,刘雄,等. 水平轴风力机叶片稳态失速气动阻尼分析[J]. 太阳能学报2011, 32(9): 1294-1302.
[9]
DU Zhaohui. A 3-D stall-delay model for hawt performance prediction: Ш. Model improvement[J]. Acta Energiae Solsris Sinica., 2000, 23(2): 145-150.
杜朝辉. 水平轴风力涡轮设计与性能预估方法的三维失速延迟模型—Ⅲ.模型改进[J]. 太阳能学报2000, 23(2): 145-150.
[10]
LI Rennian, YUAN Shangke, WEI Liejiang, et al. Measurement and calculation of blade surface pressure for a wind turbine in field[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(5): 52-56.
李仁年,袁尚科,魏列江,等. 风力机叶片表面压力的计算与外场测试分析[J]. 实验流体力学2012, 26(5): 52-56.
[11]
ZHANG Qinlin. Numercal research of 3D aerodynamic performance of wind turbine blades[D]. Beijing: Tsinghua University, 2007.
张庆麟. 风力机叶片三维气动性能的数值研究[D]. 北京:清华大学,2007.
PDF(1276 KB)

Accesses

Citation

Detail

Sections
Recommended

/