Power Data Fusion Method Based on Time-Point Matching of Multi-Source Data

XIAOBai, WANGChenglong, DONGLing, YANGangui, WANGMaochun, YANGHongzhi

Distributed Energy ›› 2019, Vol. 4 ›› Issue (5) : 29-34.

PDF(1242 KB)
PDF(1242 KB)
Distributed Energy ›› 2019, Vol. 4 ›› Issue (5) : 29-34. DOI: 10.16513/j.2096-2185.DE.191073
Renewable Energy Absorption Technology

Power Data Fusion Method Based on Time-Point Matching of Multi-Source Data

Author information +
History +

Abstract

The research on power system planning, scheduling and control often relies on the power data of each power station supply in the system. When the power system is actually running, it is difficult for each plant station to operate under a unified time base, resulting in time series of multi-source output power data do not match. Aiming at the problem of multi-source data point mismatch, this paper proposes a multi-source data fusion method based on multi-source data time point matching. Firstly, the reference time series is determined, and the expressions of each power output power time series relative to the reference time series are established. Secondly, determine the time series common domain of each power output, and construct a multi-source output power point matching model. finally, correct the time series of each power output according to the model solution result, and fuse each power output data. The example analysis shows that the method can accurately integrate the power data of power system, which is of great significance for the research of power system planning, scheduling and control.

Key words

multi-source data / time-point matching / base time series / time common domain / data fusion

Cite this article

Download Citations
Power Data Fusion Method Based on Time-Point Matching of Multi-Source Data[J]. Distributed Energy Resources. 2019, 4(5): 29-34 https://doi.org/10.16513/j.2096-2185.DE.191073

References

[1]
中华人民共和国国家发展和改革委员会. 可再生能源发展"十二五"规划[Z]. 北京:中华人民共和国国家发展和改革委员会,2012.
[2]
BAI Jianhua, XIN Songxu, LIU Jun, et al. Roadmap of realizing the high penetration renewable energy in China[J]. Proceedings of the CSEE, 2015, 35(14): 3699-3705.
白建华,辛颂旭,刘俊,等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报2015, 35(14): 3699-3705.
[3]
YANG Jingwei, ZHANG Ning, WANG Yi, et al. Multi-energy system towards renewable energy accommodation: Review and prospect[J]. Automation of Electric Power Systems, 2018, 42(4): 11-24.
杨经纬,张宁,王毅,等. 面向可再生能源消纳的多能源系:述评与展望[J]. 电力系统自动化2018, 42(4): 11-24.
[4]
LI Dalu, LI Rui, SUN Yuanzhang. Data compatibility analysis of WAMS/SCADA hybrid measurements state estimation[J]. Proceedings of the CSEE, 2010, 30(16): 60-66.
李大路,李蕊,孙元章. WAMS/SCADA混合测量状态估计数据兼容性分析[J]. 中国电机工程学报2010, 30(16): 60-66.
[5]
XUE Hui, JIA Qingquan, WANG Ning, et al. A novel power system state estimation method based on merging PMU measured data into SCADA data[J]. Power System Technology, 2008, 32(14): 44-49.
薛辉,贾清泉,王宁,等. 基于PMU量测数据和SCADA数据融合的电力系统状态估计方法[J]. 电网技术2008, 32(14): 44-49.
[6]
XIANG Minjiang, GAO Houlei, AN Yanqiu, et al. An adaptive interpolation algorithm to improve data synchronization precision[J]. Automation of Electric Power Systems, 2012, 36(8): 77-81, 91.
向珉江,高厚磊,安艳秋,等. 一种提高数据同步精度的自适应插值算法[J]. 电力系统自动化2012, 36(8): 77-81, 91.
[7]
WU Xing, LIU Tianqi, LI Xingyuan, et al. Optimal configuration of PMU based on data compatibility of WAMS/SCADA and improved FCM clustering algorithm[J]. Power System Technology, 2014, 38(3): 756-761.
吴星,刘天琪,李兴源,等. 基于WAMS/SCADA数据兼容和改进FCM聚类算法的PMU最优配置[J]. 电网技术2014, 38(3): 756-761.
[8]
ZHAO Hongga, XUE Yusheng, GAO Xiang. Impacts of the difference between measurement transmission delays on state estimation and the countermeasures[J]. Automation of Electric Power Systems, 2004, 28(21): 12-16.
赵红嘎,薛禹胜,高翔,等. 量测量的时延差对状态估计的影响及其对策[J]. 电力系统自动化2004, 28(21): 12-16.
[9]
WEI Daqian, WANG Bo, LIU Dichen, et al. WAMS/SCADA data fusion method based on time-series data correlation mining[J]. High Voltage Engineering, 2016, 42(1): 315-320.
魏大千,王波,刘涤尘,等. 基于时序数据相关性挖掘的WAMS/SCADA数据融合方法[J]. 高电压技术2016, 42(1): 315-320.
[10]
MAO Anjia, GUO Zhizhong. A practical PLA cement of PMU in WAMS complemental to SCADA and data processing method[J]. Power System Technology, 2005, 29 (8): 71-74.
毛安家,郭志忠. 与SCADA互补的WAMS中PMU的配置及数据处理方法[J]. 电网技术2005, 29(8): 71-74.
[11]
HE Shan, WANG Wenda, ZHANG Wei, et al. Evaluation method for operating state of low-voltage distribution network based on data mining[J]. Guangdong Electric Power, 2019, 32(5): 80-86.
何山,汪文达,张伟,等. 基于数据挖掘的低压配电网运行状态评估方法[J]. 广东电力2019, 32(5): 80-86.
[12]
LI Congshan, LIU Tianqi, LI Xingyuan, et al. Data fusion method of WAMS/SCADA hybrid measurements in power system state estimation[J]. High Voltage Engineering, 2013, 39(11): 2686-2691.
李从善,刘天琪,李兴源,等. 用于电力系统状态估计的WAMS/SCADA混合量测数据融合方法[J]. 高电压技术2013, 39(11): 2686-2691.
[13]
JIANG Lei, ZHENG Yuping, AI Shuyun, et al. A highly accurate time synchronization technology scheme based on merging unit[J], Automation of Electric Power Systems, 2014, 38(14): 90-94.
姜雷,郑玉平,艾淑云,等. 基于合并单元装置的高精度时间同步技术方案[J]. 电力系统自动化2014, 38(14): 90-94.
[14]
NING Nan, LIAO Xiaochun, DENG Qijun, et al. IEEE1588-based multi-clock domain synchronization in smart substation[J]. Engineering Journal of Wuhan University, 2014, 47(3): 344-349.
宁楠,廖晓春,邓其军,等. 基于IEEE1588的智能变电站多时钟域数据同步技术[J]. 武汉大学学报(工学版), 2014, 47(3): 344-349.
[15]
ZHAO Weijun, WANG Rongmao, SHI Wenjiang. The method of improve the SCADA measurement section time consistency[J]. Automation of Electric Power Systems, 2007, 31(20): 103-107.
赵维俊,王荣茂,石文江. 提高SCADA量测断面时间一致性的方法[J]. 电力系统自动化2007, 31(20): 103-107.
[16]
SHEN Jian, ZHANG Min, ZHOU Bin, et al. Methods for improving time synchronism of substation's basic measuring data[J]. Electrical Measurement & Instrumentation, 2015, 52(15): 41-45.
沈健,张敏,周斌,等. 提高变电站基础量测数据时间同步性的方法[J]. 电测与仪表2015, 52(15): 41-45.
[17]
ZHONG Jinyuan, ZHANG Yan, WEN Fushuan, et al. A fault diagnosing method in power transmission systems based on time series similarity matching[J]. Automation of Electric Power Systems, 2015, 39(06): 60-67.
钟锦源,张岩,文福拴,等. 基于时间序列相似性匹配的输电系统故障诊断方法[J]. 电力系统自动化2015, 39(6): 60-67.

Funding

Project supported by National Key Research and Development Program of China(2017YFB0902200)
Industrial Innovation Foundation of Jilin Province(2019C058-7)
Scientific Item of Education Bureau of Jilin Province(JJKH20180442KJ)
Science and Technology Project of SGCC(5228001700CW)
PDF(1242 KB)

Accesses

Citation

Detail

Sections
Recommended

/