Optimal Declaring Method of Daily Power Generation Schedule for Wind Farm Based on Stepped Pricing and Penalizing Mechanism

CAOMinghao, YUJilai

Distributed Energy ›› 2019, Vol. 4 ›› Issue (5) : 17-28.

PDF(1568 KB)
PDF(1568 KB)
Distributed Energy ›› 2019, Vol. 4 ›› Issue (5) : 17-28. DOI: 10.16513/j.2096-2185.DE.191074
Renewable Energy Absorption Technology

Optimal Declaring Method of Daily Power Generation Schedule for Wind Farm Based on Stepped Pricing and Penalizing Mechanism

Author information +
History +

Abstract

Predictive gross error management mode has been widely used in large-scale grid-connected wind farms. However, this mode can't stimulate farms to improve wind power quality and enhance schedule execution on the premise of guaranteeing the revenue of power generation, also can't help the grid to improve wind power absorption on the basis of reducing the burden of regulation or effectively controlling the marginal cost of regulation. From the subject status equality of wind power market, this paper explored how to enhance the commercial credit of schedule or contract through improving wind power quality for competing higher price and revenue, and proposed a new stepped pricing and penalizing mechanism based on the wind power quality. The mechanism evaluates wind power grades based on the trend curve characteristics, deviation tolerance, and credibility and deviation penalty of power generation schedules declared by wind power farms. For different grades of schedules, the corresponding stepped prices and penalties are adopted. On this basis, an optimal declaring model of daily power generation schedule of wind farm was proposed for maximizing its revenue. Results of case analysis show that the proposed new mechanism can more effectively stimulate wind farms to sell high-quality wind power, and hence to reduce the regulation burden of grid and create a win-win market environment for farms and grids.

Key words

wind farm / power generation schedule / stepped pricing / penalizing / credibility / deviation tolerance

Cite this article

Download Citations
Optimal Declaring Method of Daily Power Generation Schedule for Wind Farm Based on Stepped Pricing and Penalizing Mechanism[J]. Distributed Energy Resources. 2019, 4(5): 17-28 https://doi.org/10.16513/j.2096-2185.DE.191074

References

[1]
CHEN Bingsen, HU Huali. General situation and prospect of wind power in China[J]. Power System Technology, 2008, 32(): 279-282.
Abstract
S2
陈炳森,胡华丽. 我国风电发展概况及展望[J]. 电网技术2008, 32(): 279-282.
S2
[2]
CHEN Yuguo, LI Jialong, LIU Wentao, et al. Overview on key technologies for generation scheduling under electric market environment[J]. Guangdong Electric Power, 2018, 31(6): 8-13.
陈雨果,李嘉龙,刘文涛,等. 电力市场环境下发电计划关键技术综述[J]. 广东电力2018, 31(6): 8-13.
[3]
ZHANG Liying, YE Tinglu, XIN Yaozhong, et al. Problems and measures of power grid accommodating large scale wind power[J]. Proceedingsof the CSEE, 2010, 30(25): 1-9.
张丽英,叶廷路,辛耀中,等. 大规模风电接入电网的相关问题及措施[J]. 中国电机工程学报2010, 30(25): 1-9.
[4]
国家电网公司. 风电场接入电网技术规定:Q/GDW 1392—2015[S]. 北京:国家电网公司,2009.
[5]
ZHANG Ning, ZHOU Tianrui, DUAN Changgang, et al. Impact of large-scale wind farm connecting with power grid on peak load regulation demand[J]. Power System Technology, 2010, 34(1): 152-158.
张宁,周天睿,段长刚,等. 大规模风电场接入对电力系统调峰的影响[J]. 电网技术2010, 34(1): 152-158.
[6]
LU Zongxiang, HUANG Han, SHAN Baoguo, et al. Morphological evolution model and power forecasting prospect of future electric power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 12-18.
鲁宗相,黄瀚,单葆国,等. 高比例可再生能源电力系统结构形态演化及电力预测展望[J]. 电力系统自动化2017, 41(9): 12-18.
[7]
XUE Yusheng, LEI Xing, XUE Feng, et al. A review on impacts of wind power uncertainties on power systems[J]. Proceedings of the CSEE, 2014, 34(29): 5029-5040.
薛禹胜,雷兴,薛峰,等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报2014, 34(29): 5029-5040.
[8]
CAI Qiuna, YANG Yun, LU Qiuyu, et al. Research on intraday generation scheduling model and method adaptive to multi-component direct transaction in electricity market[J]. Guangdong Electric Power, 2017, 30(5): 35-39+76.
蔡秋娜,杨韵,陆秋瑜,等. 适应电力市场多成分直接交易的日内发电计划模型和方法[J]. 广东电力2017, 30(5): 35-39+76.
[9]
LU Zongxiang, LI Haibo, QIAO Ying. Flexibility evaluation and supply/demand balance principle of power system with high-penetration renewable electricity[J]. Proceedings of the CSEE, 2013, 33(16): 9-15.
鲁宗相,李海波,乔颖. 高比例可再生能源并网的电力系统灵活性评价与平衡机理[J]. 中国电机工程学报2017, 37(1): 9-19.
[10]
LEI Yazhou, WANG Weisheng, YIN Yonghua, et al. Analysis of wind power value to power system opration[J]. Power System Technology, 2002, 26(5): 10-14
雷亚洲,王伟胜,印永华,等. 风电对电力系统运行的价值分析[J]. 电网技术2002, 26(5): 10-24.
[11]
TIAN Kuo, ZENG Ming, YAN Fan, et al. A dynamiceconomic scheduling model considering environmental protection cost and impact of connecting wind power to power grid[J]. Power System Technology, 2011, 35(6): 55-59.
田廓,曾鸣,鄢帆,等. 考虑环保成本和风电接入影响的动态经济调度模型[J]. 电网技术2011, 35(6): 55-59.
[12]
CHEN Daojun, GONG Qingwu, ZHANG Maolin, et al. Multi-objective optimal dispatch in wind power integratedsystem incorporating energy-environmental efficiency[J]. Proceedings of the CSEE, 2011 31(13): 10-17. (in Chinese).
陈道君,龚庆武,张茂林,等. 考虑能源环境效益的含风电场多目标优化调度[J]. 中国电机工程学报2011, 31(13): 10-17.
[13]
ZHOU Shuangxi, WANG Haichao, CHEN Shousun. Analysis on operation value of wind power resources[J]. Power System Technology, 2006, 30(14): 98-102.
周双喜,王海超,陈寿孙. 风力发电运行价值分析[J]. 电网技术2006, 30(14): 98-102.
[14]
SUN Yuanzhang, WU Jun, LI Guojie. Influence research of wind power generation on power systems[J]. Power System Technology, 2007, 31(20): 55-62, 70.
孙元章,吴俊,李国杰. 风力发电对电力系统的影响[J]. 电网技术2007, 31(20): 55-62, 70.
[15]
ZHOU Wei, PENG Yu, SUN Hui, et al. Dynamic economic dispatch in wind power integrated system[J]. Proceedings of the CSEE, 2009, 29(25): 13-18.
周玮,彭昱,孙辉,等. 含风电场的电力系统动态经济调度[J]. 中国电机工程学报2009, 29(25): 13-18.
[16]
ZHAO Shanshan, ZHANG Dongxia, YIN Yonghua, et al. Pricing policy and risk management strategy for wind power considering wind integration[J]. Power System Technology, 2011, 35(5): 142-145.
赵珊珊,张东霞,印永华,等. 风电的电价政策及风险管理策略[J]. 电网技术2011, 35(5): 142-145.
[17]
LI Lu, ZHENG Yaxian, CHEN changsheng, et al. Calculation of wind power variation costs and its application research[J]. Proceedings of the CSEE, 2016, 36(19): 5155-5163, 5396.
李璐,郑亚先,陈长升,等. 风电的波动成本计算及应用研究[J]. 中国电机工程学报2016, 36(19): 5155-5163, 5396.
[18]
WU Tingwei, Research on balance cost and block value of wind power[D]. Nanjing: Southeast University, 2016.
吴亭苇. 风电的平衡成本及分段价值研究[D]. 南京:东南大学,2016.
[19]
CHEN Changsheng, Research on system cost and block value of wind power[D]. Nanjing: Southeast University, 2015.
陈长升. 风电的系统成本分析及分段价值发现研究[D]. 南京:东南大学,2015.
[20]
CHAI Dapeng, SHI Hui, XUE Song, et al. Simulation of deterministic model and stochastic model of additional cost for grid-integration of wind power[J]. Power System Technology, 2014, 38(3): 687-693.
柴大鹏,史慧,薛松,等. 风电并网附加成本确定性模型和随机性模型的模拟仿真[J]. 电网技术2014, 38(3): 687-693.
[21]
SUN Jin. Operating cost and value analysis of wind power[D]. Changsha: Hunan University, 2012.
孙金. 风电运行成本与价值分析[D]. 长沙:湖南大学,2012.
[22]
YUAN Tiejiang, CHAO Qin, TOERXUN Yibulayin, et al. Optimized economic and environment-friendly dispatching modeling for large-scale wind power integration[J]. Proceedings of the CSEE, 2010, 30(31): 7-13.
袁铁江,晁勤,吐尔逊·伊不拉音,等. 大规模风电并网电力系统动态清洁经济优化调度的建模[J]. 中国电机工程学报2010, 30(31): 7-13.
[23]
WANG Kui. Research on some problems of multiple time and space scale coordination of wind power intergrated system[D]. Wuhan: Huazhong University of Science and Technology, 2013.
王魁. 含大规模风电电力系统多时间尺度协调的若干问题研究[D]. 武汉:华中科技大学,2013.
[24]
KUANG Honghai, WANG Jianhui, ZHANG Hanchao, et al. A novel wind power climbing section identification method[J]. Power System Technology, 2019, 43(5): 1752-1759.
匡洪海,王建辉,张瀚超,等. 一种新型的风电功率爬坡段识别方法[J]. 电网技术2019, 43(5): 1752-1759.
[25]
REN Shuangxue. Research on wind power ramp characteristics and prediction[D]. Harbin: Harbin Institute of Technology, 2014.
任双雪. 风电功率陡坡特性与预测问题研究[D]. 哈尔滨:哈尔滨工业大学,2014.
[26]
GU Xingkai, FAN Gaofeng, WANG Xiaorong, et al. Summarization of wind power prediction technology[J]. Power System Technology, 2007, 31(2): 335-338.
谷兴凯,范高锋,王晓蓉,等. 风电功率预测技术综述[J]. 电网技术2007, 31(2): 335-338.

Funding

Project supported by National Natural Science Foundation of China(51877049)
PDF(1568 KB)

Accesses

Citation

Detail

Sections
Recommended

/