Error Analysis and Correction Method of Wind Direction Meter for Wind Turbine

WANG Xiaoyu,DING Tongguang,BAI Nianzong,GAO Xin,XU Bingkun,FENG XinJian

Distributed Energy ›› 2019, Vol. 4 ›› Issue (6) : 57-62.

PDF(8205 KB)
PDF(8205 KB)
Distributed Energy ›› 2019, Vol. 4 ›› Issue (6) : 57-62. DOI: 10.16513/j.2096-2185.DE.191082
Application Technology

Error Analysis and Correction Method of Wind Direction Meter for Wind Turbine

Author information +
History +

Abstract

In order to improve the yaw accuracy of wind turbines in actual operation, the accuracy of wind direction measurement by mechanical anemometer is studied by combining horizontal lidar test with numerical simulation of computational fluid dynamics (CFD). Through analyzing the test data and simulation results, the following conclusions are drawn: 1) When the speed of wind turbine impeller is less than rated speed, and with the increase of the incoming wind speed, the deviation of wind direction measured by the anemometer decreases gradually, and the quadratic function between the incoming wind speed and yaw angle can be used to correct the yaw deviation better. 2) When the rotating speed of the runner reaches the rated speed, and with the increase of the incoming wind speed, the deviation of wind direction measured by the anemometer remains near the constant of 3.54°. When the yaw error is corrected by a constant of 3.54°. 3) The load of the unit is reduced and the generating capacity can be increased by about 1% after the yaw error is corrected by a piecewise function.

Key words

wind turbine / wind direction indicator / yaw / numerical simulation

Cite this article

Download Citations
Xiaoyu WANG , Tongguang DING , Nianzong BAI , et al . Error Analysis and Correction Method of Wind Direction Meter for Wind Turbine[J]. Distributed Energy Resources. 2019, 4(6): 57-62 https://doi.org/10.16513/j.2096-2185.DE.191082

References

[1]
JIANG Quanyue. Exploration of market operation after wind power generation in China[J]. Economic and Trade Practice, 2018(18): 204-205.
姜全越. 我国风电后市场运营探究[J]. 经贸实践2018(18): 204-205.
[2]
LI Xiaodan. Study on optimal operation of doubly fed wind turbines[D]. Zhengzhou: North China University of Water Resources and Hydropower, 2014.
李晓丹. 双馈风电机组的优化运行研究[D]. 郑州:华北水利水电大学,2014.
[3]
WANG Xin, WU Genyong, PAN Donghao, et al. Research on yaw optimization control method of wind turbine based on operation data[J]. Renewable Energy, 2016, 34 (3): 413-420.
王欣,吴根勇,潘东浩,等. 基于运行数据的风电机组偏航优化控制方法研究[J]. 可再生能源2016, 34(3): 413-420.
[4]
WANG Xiaoyu, ZHAO Xiaqing, XU Bingkun, et al. Research on correction of wind speed and incoming wind speed measured by wind turbine anemometer[J]. Distributed Energy, 2019, 4(3): 63-68.
王晓宇,赵夏青,许炳坤,等. 风力机组风速仪测量风速与来流风速校正研究[J]. 分布式能源2019, 4(3): 63-68.
[5]
DING Xiang, LAN Zhijie, LUO Huabing, et al. Optimum design and application of automatic yaw system for megawatt wind turbine[J]. Electrical Application, 2015, 34(19): 94-97.
丁祥,兰志杰,罗华兵,等. 兆瓦级风电机组自动偏航系统优化设计与应用[J]. 电气应用2015, 34(19): 94-97.
[6]
LI Dazhong, DUAN Liming, YANG Guang. An improved optimizing strategy for maximum power point tracking for wind turbines[J]. Guangdong Electric Power, 2017, 30(8): 59-62.
李大中,段立溟,杨光. 一种改进的大型风电机组最大功率点跟踪优化策略[J]. 广东电力2017, 30(8): 59-62.
[7]
European Norm. Dansk standard wind turbine power performance verification in complex terrain and wind farms: RisØ-R-1330[S]. Denmark, Roskilde: RisØ National laboratory, 2002.
[8]
LAN Wei, ZHANG Zhongquan, LEI Yang, et al. Study on output performance analysis of wind turbine[J]. Power Generation & Air Condition, 2017, 38(3): 26-29, 46.
兰维,张中泉,雷阳,等. 风电机组出力性能分析方法研究[J]. 发电与空调2017, 38(3): 26-29, 46.
[9]
SHEN Xiaojun, ZHOU Chongcheng, FU Xuejiao, et al. Current situation and prospect of wind parameter sensing methods for wind farms[J]. Journal of Tongji University (Natural Science Edition), 2018, 46(9): 1289-1297.
沈小军,周冲成,付雪姣,等. 风电场风参数感知方法现状与展望[J]. 同济大学学报(自然科学版), 2018, 46(9): 1289-1297.
[10]
WAGNER R, COURTNEY M S, PEDERSEN T F, et al. Uncertainty of power curve measurement with a two-beam nacelle-mounted lidar[J]. Wind Energy, 2016, 19(7): 1269-1287.
[11]
张磊,鲁志平,辛克锋,等. 基于分位数的风力发电机组功率曲线绘制方法:CN106089599A[P]. 2016-11-09.
[12]
SITU You, LI Gangqiang, ZHANG Shuiping. Short-term wind speed forecasting based on wavelet decomposition and deep belief network[J]. Guangdong Electric Power, 2017, 30(4): 25-30, 60.
司徒友,李刚强,张水平. 基于小波分解和深度信念网络的短期风速预测[J]. 广东电力2017, 30(4): 25-30, 60.
[13]
WANG Fan. Aerodynamic design and performance analysis of wind turbine blades[D]. Qinhuangdao: Yanshan University, 2016.
王帆. 风力机叶片气动外形设计及性能分析[D]. 秦皇岛:燕山大学,2016.
[14]
WANG Xiaoyu, ZHAO Xiaqing, XU Bingkun, et al. Accuracy of wind turbine anemometer wind measurement based on Simon-wong rigid body algorithm[J]. Energy-saving Technology, 2019, 37(3): 248-254.
王晓宇,赵夏青,许炳坤,等. 基于Simon-wong刚体算法的风力机风速仪测风准确性研究[J]. 节能技术2019, 37(3): 248-254.
PDF(8205 KB)

Accesses

Citation

Detail

Sections
Recommended

/