Supercritical CO2 Cycle Solar Thermal Power Generation System Integrated With Cool Storage Device

ZHENG Kaiyun

Distributed Energy ›› 2019, Vol. 4 ›› Issue (6) : 41-44.

PDF(1152 KB)
PDF(1152 KB)
Distributed Energy ›› 2019, Vol. 4 ›› Issue (6) : 41-44. DOI: 10.16513/j.2096-2185.DE.191087
Application Technology

Supercritical CO2 Cycle Solar Thermal Power Generation System Integrated With Cool Storage Device

Author information +
History +

Abstract

Solar energy and wind power need to be equipped with large-scale energy storage devices to suppress power fluctuations. The cost of available energy storage equipment is relatively high, which needs to be developed and innovated. The solar thermal power generation system has good flexibility in energy storage. It can store heat or cool. Heat and cold are used in the hot end and cold end of thermal cycle respectively. In view of the remarkable increase of supercritical CO2 cycle efficiency with the decrease of cold end temperature, and the low boiling point temperature of working substance, there is a large room for cooling. The concept of supercritical CO2 cycle solar thermal power generation system with cold storage is proposed, which indirectly stores surplus new energy power through refrigeration. Thermodynamic analysis of supercritical CO2 cycle with main parameters of 550 ℃/20 MPa and 700 ℃/30 MPa respectively shows that the energy storage capacity of the above system can reach 10% of the power generation capacity of solar thermal power station, and the energy storage efficiency can reach more than 60%. The preliminary economic analysis shows that the system can recover the investment of energy storage equipment for about 3 to 5 years, and has good economy.

Key words

cool storage / solar thermal power generation / supercritical CO2 cycle / energy storage efficiency

Cite this article

Download Citations
Kaiyun ZHENG. Supercritical CO2 Cycle Solar Thermal Power Generation System Integrated With Cool Storage Device[J]. Distributed Energy Resources. 2019, 4(6): 41-44 https://doi.org/10.16513/j.2096-2185.DE.191087

References

[1]
JIA Hongxin, ZHANG Yu, WANG Yufei, et al. Energy storage for wind energyapplications[J]. Renewable Energy Resources, 2009, 27(6): 10-15.
贾宏新,张宇,王育飞,等. 储能技术在风力发电系统中的应用[J]. 可再生能源2009, 27(6): 10-15.
[2]
LI Qionghui, WANG Caixia, ZHANG Jing, et al. A roadmap for large scale energy storage for grid-level applications[J]. Energy Storage Science and Technology, 2017, 6(1): 141: 146.
李琼慧,王彩霞,张静,等. 适用于电网的先进大容量储能技术发展路线图[J]. 储能科学与技术2017, 6(1): 141: 146.
[3]
ZHANG Zhengling. Research on situation and countermeasures of new energy integration in the 13th five-year plan period and its multi-scenario simulation[J]. Electric Power, 2018, 51(1): 1-8.
张正陵. 中国"十三五"新能源并网消纳形势、对策研究及多情景运行模拟分析[J]. 中国电力2018, 51(1): 1-8.
[4]
TURCHI C S, MA Z, NEISES T, et al. Thermodynamic study of advanced supercritical carbon dioxide power cycles for high performance concentrating solar power systems[J]. Journal of Solar Energy Engineering, 2012, 135: 1-7.
[5]
MEHOS M, TURCHI C, VIDAL J, et al. Concentrating solar power Gen3 demonstration roadmap[EB/OL].
[6]
ZHAO Shufu. Research about water cooling turbo chiller performance in off-design condition[J]. Refrigeration Air Conditioning & Electric Power Machinery, 2011, 32(6): 1-6.
赵书福. 离心式冷水机组变工况运行性能分析研究[J]. 制冷空调与电力机械2011, 32(6): 1-6.
[7]
CHEANG V T, HEDDERWICK R A, MCGREGOR C. Benchmarking supercritical carbon dioxide cycles against steam Rankine cycles for concentrated solar power[J]. Solar Energy, 2015, 113: 199-211.
[8]
DOE. 2014 Sun shot initiative portfolio book: Concentrating solar power[EB/OL]. 2014.
[9]
ZHENG Kaiyun. Supercritical carbon dioxide and air combined cycle efficiency analysis[J]. Distributed Energy, 2019, 4(1): 11-15.
郑开云. 超临界二氧化碳与空气联合循环效率分析[J]. 分布式能源2019, 4(1): 11-15.
[10]
ZHENG Kaiyun. Efficiency analysis for supercritical carbon dioxide Brayton cycles[J]. Power Equipment, 2017, 31(5): 305-309.
郑开云. 超临界二氧化碳布雷顿循环效率分析[J]. 发电设备2017, 31(5): 305-309.
[11]
ZHENG Kaiyun. Preliminary investigation on the supercritical carbon dioxide cycle cogeneration system[J]. Distributed Energy, 2017, 2(3): 47-51.
郑开云. 超临界二氧化碳循环热电联产系统初步研究[J]. 分布式能源2017, 2(3): 47-51.
[12]
LI Guang-yang, NIU Tao, MIN Ling. Analysis of economics and development status of energy storage power station[J]. Electrotechnics Electric, 2019(1): 5-8.
李广洋,牛涛,闵玲. 储能电站经济性及发展现状分析[J]. 电工电气2019(1): 5-8.
[13]
PEI Xiuyin. Economic analysis of type selection of water chillers for central air conditioning[C]//Proceedings of Fujian Annual Meeting on HVAC and Refrigeration in 2003, 2003.
裴秀英. 中央空调用冷水机组选型的经济性分析[C]//2003年福建省暖通空调制冷学术年会论文资料,2003.
PDF(1152 KB)

Accesses

Citation

Detail

Sections
Recommended

/