Cost Analysis of Energy Storage Based on Life Cycle Cost

FU Xu, LI Fuchun, YANG Xin, YANG Panfeng

Distributed Energy ›› 2020, Vol. 5 ›› Issue (3) : 34-38.

PDF(1150 KB)
PDF(1150 KB)
Distributed Energy ›› 2020, Vol. 5 ›› Issue (3) : 34-38. DOI: 10.16513/j.2096-2185.DE.2001003
New Energy Storage Technology and Its Application

Cost Analysis of Energy Storage Based on Life Cycle Cost

Author information +
History +

Abstract

The large-scale application of energy storage technology is an effective way to improve the economic performance and safety of the power grid containing renewable energy. In order to reasonably evaluate the economy of energy storage in the power grid, the life cycle cost method is adopted, according to the energy storage cost and technical characteristics of pumped storage power station, such as compressed air storage, lead-acid battery, sodium sulfur battery, liquid flow battery, lithium ion battery, etc. The investment, annual cost and electricity cost of various kinds of energy storage are calculated, and the economy of various types of energy storage under different utilization hours is compared. The research results show that the minimum cost of electricity storage for pumped storage power station is the lowest, followed by compressed air energy storage, and the highest energy cost of battery energy storage.

Key words

energy storage / life cycle / electricity cost / pumped storage power station / compressed air energy storage / lithium ion battery

Cite this article

Download Citations
Xu FU , Fuchun LI , Xin YANG , et al. Cost Analysis of Energy Storage Based on Life Cycle Cost[J]. Distributed Energy Resources. 2020, 5(3): 34-38 https://doi.org/10.16513/j.2096-2185.DE.2001003

References

[1]
娄素华,易林,吴耀武,等. 基于可变寿命模型的电池储能容量优化配置[J]. 电工技术学报2015, 30(4): 265-271.
LOU Suhua, YI Lin, WU Yaowu, et al. Optimizing deployment of battery energy storage based on lifetime predication[J]. Transactions of China Electrotechnical Society, 2015, 30(4): 265-271.
[2]
孙振新,刘汉强,赵喆,等. 储能经济性研究[J]. 中国电机工程学报2013, 33(S): 54-58.
[3]
丁明,徐宁舟,林根德,等. 电池储能电站静态功能的研究[J]. 电工技术学报2012, 27(10): 242-248.
DING Ming, XU Ningzhou, LIN Gende. Static function of the battery energy storage system[J]. Transactions of China Electrotechnical Society, 2012, 27(10): 242-248.
[4]
薛金花,叶季蕾,陶琼,等. 采用全寿命周期成本模型的用户侧电池储能经济可行性研究[J]. 电网技术2016, 40(8): 2471-2476.
XUE Jinhua, YE Jilei, TAO Qiong, et al. Economic feasibility of user-side battery energy storage based on whole-life-cycle cost model[J]. Power System Technology, 2016, 40(8): 2471-2476.
[5]
赵晶晶,李振坤,朱兰,等. 储能系统在微网中的优化配置与成本分析[J]. 华东电力2011, 39 (10): 1615-1618.
ZHAO Jingjing, LI Zhenkun, ZHU Lan, et al. Optimal allocation and cost analysis of energy storage system in micro grid. [J]. East China Electric Power, 2011, 39(10): 1615-1618.
[6]
朱永强,郝嘉诚,赵娜,等. 能源互联网中的储能需求、储能的功能和作用方式[J]. 电工电能新技术2018, 37(2): 69-75.
ZHU Yongqiang, HAO Jiacheng, ZHAO Na, et al. Demands, functions and action manners of energy storage in energy internet[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(2): 69-75.
[7]
闫俊辰. 一种基于“能量”成本的储能技术评价新方法[J]. 储能科学与技术2019, 8(2): 269-275.
YAN Junchen. An evaluation method of energy storage technologies based on energetic costs[J]. Energy Storage Science and Technology, 2019, 8(2): 269-275.
[8]
李建林,修晓青,吕项羽,等. 储能系统容量优化配置及全寿命周期经济性评估研究综述[J]. 电源学报2018, 16(4): 1-13.
LI Jianlin, XIU Xiaoqing, LV Xiangyu, et al. Review on capacity optimization configuration and life cycle economic evaluation method for energy storage system[J]. Journal of Power Supply, 2018, 16(4): 1-13.
[9]
王海华,陆冉,曹炜,等. 规模风电并网条件下储能系统参与辅助调峰服务容量配置优化研究[J]. 电工电能新技术2019, 38(6): 42-49.
WANG Haihua, LU Ran, CAO Wei, et al. Optimal capacity allocation of energy storage system participating auxiliary peak regulation in large-scale wind power integation[J] Advanced Technology of Electrical Engineering and Energy, 2019, 38(6): 42-49.
[10]
苏伟,钟国彬,徐凯琪,等. 储能技术经济性评估方法综述[J]. 广东电力2019, 32(1): 29-35.
SU Wei, ZHONG Guobin, XU Kaiqi, et al. Review of evaluation method for economy of energy storage technology[J]. Guangdong Electric Power, 2019, 32(1): 29-35.
[11]
POONPUN P, JEWELL W T. Analysis of the cost per kilowatt hour to store electricity [J]. IEEE Transactions on Energy Conversion, 2008, 23(2): 529-534.
[12]
刘坚. 储能技术经济性现状及商业化运行障碍[J]. 中国能源2017, 39(7): 36-40.
[13]
潘福荣,张建赟,周子旺,等. 用户侧电池储能系统的成本效益及投资风险分析[J]. 浙江电力2019, 38(5): 43-49.
PAN Furong, ZHANG Jianyun, ZHOU Ziwang, et al. Cost-benefit and investment risk analysis of user-side battery energy storage system[J], Zhejiang Electric Power, 2019, 38(5): 43-49.
[14]
LI X J, YAO L Z, HUI D. Optimal control and management of large-scale battery energy storage system to mitigate the fluctuation and intermittence of renewable generations[J]. Journal of Modern Power Systems and Clean Energy, 2016, 4(4): 593-603.
[15]
LI X J, HUI D, LAI X K. Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations[J]. IEEE Transactions on Sustainable Energy, 2013, 4(2): 464-473.
[16]
LEI M Y, YANG Z L, WANG Y B, et al. Design of energy storage control strategy to improve the PV system power quality[C]//IECON2016-42nd Annual Conference of the IEEE Industrial Electronics Society. Florence: IEEE, 2016: 2022-2027.
[17]
单茂华,李陈龙,梁廷婷,等. 用于平滑可再生能源出力波动的电池储能系统优化控制策略(英文)[J]. 电网技术2014, 38(2): 469-477.
SHAN Maohua, LI Chenlong, LIANG Tingting, et al. A real-time optimal control strategy for battery energy storage system to smooth active output fluctuation of renewable energy sources[J]. Power System Technology, 2014, 38(2): 469-477 (in English).
PDF(1150 KB)

Accesses

Citation

Detail

Sections
Recommended

/