Optimal Capacity Allocation of Hydrogen Production System Participating Peak Regulation for Auxiliary with Thermal Power Plant

CAO Wei, ZHONG Xia, WANG Haihua, HAN Xuedong, PAN Le

Distributed Energy ›› 2020, Vol. 5 ›› Issue (2) : 15-20.

PDF(1318 KB)
PDF(1318 KB)
Distributed Energy ›› 2020, Vol. 5 ›› Issue (2) : 15-20. DOI: 10.16513/j.2096-2185.DE.2001005
Basic Research

Optimal Capacity Allocation of Hydrogen Production System Participating Peak Regulation for Auxiliary with Thermal Power Plant

Author information +
History +

Abstract

Due to the increasing proportion of renewable energy installations such as wind power, which brings great pressure to power system operation and dispatching because of intermittency and volatility of wind power, the demand for auxiliary peak regulation is becoming more urgent. This paper studied on the optimization model of hydrogen production system participating in peak regulation for auxiliary with thermal power plant, the abundant wind power which cannot consumed by the power grid is stored by way electrolytic water and hydrogen storage, which can improve resource utilization efficiency. Through the analysis of techno economic model of hydrogen production system participating peak regulation, considering thermal power and hydrogen production system constraints, the control strategy of hydrogen production system participating in peak regulation for auxiliary is proposed. Considering the integrated load effected by wind fluctuations, capacity optimization configuration scheme of hydrogen production system is obtained, and the scheme is analyzed in the actual example model, which verifies the correctness of the theoretical analysis.

Key words

thermal power unit / hydrogen production system / auxiliary peak regulation / capacity allocation

Cite this article

Download Citations
Wei CAO , Xia ZHONG , Haihua WANG , et al . Optimal Capacity Allocation of Hydrogen Production System Participating Peak Regulation for Auxiliary with Thermal Power Plant[J]. Distributed Energy Resources. 2020, 5(2): 15-20 https://doi.org/10.16513/j.2096-2185.DE.2001005

References

[1]
中华人民共和国中央人民政府. 国家能源局举行新闻发布会介绍2019年前三季度能源形势等情况[EB/OL]. (2019-10-29).
[2]
段建民,王志新,王承民. 基于电网聚合模型的新能源接纳能力评价与分析[J]. 分布式能源2019, 4(5): 42-49.
DUAN Jianmin, WANG Zhixin, WANG Chengmin. Evaluation and analysis of the capability of new energy integration based on grid aggregation mode[J]. Distributed Energy, 2019, 4(5): 42-49.
[3]
王海华,陆冉,曹炜,等. 规模风电并网条件下储能系统参与辅助调峰服务容量配置优化研究[J]. 电工电能新技术2019, 38(6): 42-49.
WANG Haihua, LU Ran, CAO Wei, et al. Optimal capacity allocation of energy storage system participating peak regulation for auxiliary with large-scale wind power integration[J]. Advanced Technology of Electrical Engineering, 2019, 38(6): 42-49.
[4]
余潇潇,张璞,刘兆燕,等. 北京电网风电发展与消纳能力[J]. 电力建设2015, 36(8): 49-54.
YU Xiaoxiao, ZHANG Pu, LIU Zhaoyan, et al. Development and maximum accommodating capacity of wind power in Beijing power grid [J]. Electric Power Construction, 2015, 36(8): 49-54.
[5]
HAN X, JI T, ZHAO Z, et al. Economic evaluation of batteries planning in energy storage power stations for load shifting[J]. Renewable Energy, 2015, (78): 643-647.
[6]
XU G, CHENG H, FANG S, et al. Optimal configuration of battery energy storage system for peak-load regulation[C]//IEEE PES Asia-Pacific Power and Energy Engineering Conference. Beijing, China, 2015. 1-5.
[7]
厉伟,颜宁,张博,等. 基于情景分析法风电场中储能系统经济调度[J]. 电工电能新技术2018, 37(2): 47-52.
LI Wei, YAN Ning, ZHANG Bo, et al. Economic dispatch of energy storage system in wind farm based on scenario analysis method[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(2): 47-52.
[8]
林俐,邹兰青,周鹏,等. 规模风电并网条件下火电机组深度调峰的多角度经济性分析[J]. 电力系统自动化2017, 41(7): 21-27.
LIN Li, ZOU Lanqing, ZHOU Peng, et al. Multi-angel economic analysis on deep peak regulation of thermal power units with large-scale wind power integration[J]. Automation of Electric Power Systems, 2017, 41(7): 21-27.
[9]
刘永奇,张弘鹏,李群. 东北电网电力调峰辅助服务市场设计与实践[J]. 电力系统自动化2017, 41(10): 148-154.
LIU Yongqi, ZHANG Hongpeng, LI Qun. Design and practice of peak regulation ancillary service market for northeast China power grid[J]. Automation of Electric Power Systems, 2017, 41(10): 148-154.
[10]
杨金刚,刘维妙,李顺昕,等. 风氢耦合系统容量配比及能量管理策略研究[J]. 电力建设2017, 38(1): 106-115.
YANG Jingang, LIU Weimiao, LI Shunxin, et al. Optimal operation scheme and benefit analysis of wind-hydrogen power systems[J]. Electric Power Construction, 2017, 38(1): 106-115.
[11]
蔡国伟,陈冲,孔令国,等. 风电/制氢/燃料电池/超级电容器混合系统控制策略[J]. 电工技术学报2017, 32(17): 84-94.
CAI Guowei, CHEN Chong, KONG Lingguo, et al. Control of hybrid system of wind/hydrogen/fuel cell/supercapacitor[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 84-94.
[12]
黄大为,齐德卿,于娜,等. 利用制氢系统消纳风电弃风的制氢容量配置方法[J]. 太阳能学报2017, 38(6): 1517-1525.
HUANG Dawei, QI Deqing, YU Na, et al. Capacity allocation method of hydrogen production system consuming abandoned wind power[J]. Acta Energiae Solaris Sinica, 2017, 38(6): 1517-1525.
[13]
付长超,万新华. 弃风电与制氢联合运行机组容量匹配性研究[J]. 风能2018(7): 82-85.
[14]
时璟丽,高虎,王红芳. 风电制氢经济性分析[J]. 中国能源2015, 37(2): 11-14.
[15]
邵志芳,吴继兰,赵强,等. 风电制氢效费分析模型及仿真[J]. 技术经济2018, 37(6): 69-75, 129.
SHAO Zhifang, WU Jilan, ZHAO Qiang, et al. Cost effectiveness analysis model for wind power produce hydrogen system and simulation[J]. Technology Economics, 2018, 37(6): 69-75, 129.
[16]
李有亮,谢小燕,陈天宇,等. 省级调峰辅助服务市场运营规则分析[J]. 中国电力企业管理2019(22): 37-41.
[17]
黎静华,汪赛. 兼顾技术性和经济性的储能辅助调峰组合方案优化[J]. 电力系统自动化2017, 41(9): 44-50, 150.
LI Jinghua, WANG Sai. Optimal combined peak-shaving scheme using energy storage for auxiliary considering both technology and economy[J]. Automation of Electric Power Systems, 2017, 41(9): 44-50, 150.
PDF(1318 KB)

Accesses

Citation

Detail

Sections
Recommended

/