Profit Model Analysis of Multi Energy Complementary System

FU Xu,YANG Panfeng

Distributed Energy ›› 2020, Vol. 5 ›› Issue (4) : 28-34.

PDF(1039 KB)
PDF(1039 KB)
Distributed Energy ›› 2020, Vol. 5 ›› Issue (4) : 28-34. DOI: 10.16513/j.2096-2185.DE.2002007
Integrated Energy Column

Profit Model Analysis of Multi Energy Complementary System

Author information +
History +

Abstract

Multi energy complementary system provides safe and reliable energy supply through the optimal coupling of cold, hot and electrical energy, which is the way to achieve the optimal social energy efficiency, promote the utilization of renewable energy and realize sustainable development. The income structure, profit model, optimization objectives and influencing factors of the multi energy complementary system are analyzed. The actual case of an economic development zone in a certain region shows that: different project investors, result in different optimization objectives and operation modes as well as profitability of multi-energy complementary system operators. The profit of source + network + dispatching control center mode is higher than that of network + dispatching control center mode. If the load can participates in the demand-side response, the cost of energy supply can be further reduced. The research results can provide reference for commercial operation of multi energy complementary system in China.

Key words

multi energy complementary system / profit model / combined cooling, heating and power / energy optimization

Cite this article

Download Citations
Xu FU , Panfeng YANG. Profit Model Analysis of Multi Energy Complementary System[J]. Distributed Energy Resources. 2020, 5(4): 28-34 https://doi.org/10.16513/j.2096-2185.DE.2002007

References

[1]
姜子卿,郝然,艾芊. 基于冷热电多能互补的工业园区互动机制研究[J]. 电力自动化设备2017, 37(6): 260-267.
JIANG Ziqing, HAO Ran, AI Qian. Interaction mechanism of industrial park based on multi-energy complementation[J]. Electric Power Automation Equipment, 2017, 37(6): 260-267.
[2]
郭宇航,胡博,万凌云,等. 含热泵的热电联产型微电网短期最优经济运行[J]. 电力系统自动化2015, 39(14): 16-22.
GUO Yuhang, HU Bo, WAN Lingyun, et al. Short term optimal economic operation of thermoelectric power generation microgrid with heat pump[J]. Automation of Electric Power Systems, 2015, 39(14): 16-22.
[3]
胡蘭丹,刘东,闫丽霞,等. 考虑需求响应的CCHP多能互补优化策略[J]. 南方电网技术2016, 10(12): 74-81.
HU Landan, LIU Dong, YAN Lixia, et al. CCHP multi energy complementary optimization strategy considering demand response[J]. Southern Power Grid Technology, 2016, 10(12): 74-81.
[4]
BAHRAMI S, SAFE F. A financial approach to evaluate an optimized combined cooling, heat and power system[J]. Energy and Power Engineering, 2013, 5(5): 352-362.
[5]
范龙,李献梅,陈跃辉,等. 激励CCHP参与需求侧管理双向峰谷定价模型[J]. 电力系统保护与控制2016, 44(17): 45-51.
FAN Long, LI Xianmei, CHEN Yuehui, et al. Encourage CCHP to participate in demand side management bidirectional peak-valley pricing model[J]. Power System Protection and Control, 2016, 44(17): 45-51.
[6]
MAGO P J, HUEFFED A K. Evaluation of a turbine driven CCHP system for large office buildings under different operating strategies[J]. Energy and Buildings, 2010, 42(10): 1628-1636.
[7]
梁浩,龙惟定. 城市能源系统综合规划模型的研究与应用[J]. 山东建筑大学学报2010, 25(5): 524-528.
LIANG Hao, LONG Weiding. Research and application of inte-grated planning model for urban energy system[J]. Journal of Shandong Jianzhu University, 2010, 25(5): 524-528.
[8]
邵成成,王锡凡,王秀丽,等. 多能源系统分析规划初探[J]. 中国电机工程学报2016, 36(14): 3817-3828.
SHAO Chengcheng, WANG Xifan, WANG Xiuli, et al. Probe into analysis and planning of multi energy systems[J]. Proceedings of the CSEE, 2016, 36(14): 3817-3828.
[9]
MA L, LIU N, ZHANG J, et al. Energy management for joint operation of CHP and PV prosumers inside a grid-connected microgrid: A game theoretic approach[J]. IEEE Transactions on Industrial Informatics, 2016, 12(5): 1930-1942.
[10]
UMMELS B C, GIBESCU M, PELGRUM E, et al. Impacts of wind power on thermal generation unit commitment and dispatch[J]. IEEE Transactions on Energy Conversion, 2007, 22(1): 44-51.
[11]
MASOUD A, NIMA A. Optimal dynamic expansion planning of distribution systems considering non-renewable distributed generation using a new heuristic double-stage optimization solution approach[J]. Applied Energy, 2015, 13(156): 655-665.
[12]
GIORGOS T, NIKOLAOS S, CHRISTOPHER K. Integration of the environmental management aspect in the optimization of the design and planning of energy systems[J]. Journal of Cleaner Production, 2015, 12(106): 576-593.
[13]
UNSIHUAY-VILA C, MARANGON-LIMA J W, DE SOUZA A C Z, et al. A model to long-term, multi area, multistage, and integrated expansion planning of electricity and natural gas systems[J]. IEEE Transactions on Power Systems, 2010, 25(2): 1154-1168.
[14]
汪硕承,谢开贵,胡博,等. 含光热电站的多能源系统混合储能容量优化配置[J]. 分布式能源2019, 4(5): 58-66.
WANG Shuocheng, XIE Kaigui, HU Bo, et al. Optimal configuration of hybrid energy storage capacity in multi-energy system with CSP integration[J]. Distributed energy, 2019, 4(5): 58-66.
[15]
王乾,王彬,方建勇,等. 工业园区多能直供运营模式案例研究[J]. 电力自动化设备2017, 37(6): 268-274.
WANG Qian, WANG Bin, FANG Jianyong, et al. Interaction mechanism of industrial park based on multi-energy complementation[J]. Electric Power Automation Equipment, 2017, 37(6): 268-274.
[16]
何奇琳,艾芊. 售电侧放开环境下含需求响应虚拟电厂的电力市场竞价策略[J]. 电力建设2019, 40(2): 1-10.
HE Qilin, AI Qian. Bidding strategy of electricity market including virtual power plant considering demand response under retail power market deregulation[J]. Electric Power Construction, 2019, 40(2): 1-10.
[17]
王丹,苏朋飞,桂勋,等. 售电侧市场开放环境下微网端对端电能交易关键技术综述及展望[J]. 电力建设2019, 40(01): 116-126.
WANG Dan, SU Pengfei, GUI Xun, et al. Overview and prospect of key technologies of peer-to-peer energy trading in micro-grid under power-sales-side market liberalization[J]. Electric Power Construction, 2019, 40(01): 116-126.
[18]
杨锦琦. 我国碳交易市场发展现状,问题及其对策[J]. 企业经济2018, 37(10): 29-34.
YANG Jinqi. Current situation, problems and countermeasures of China's carbon trading market[J]. Enterprise Economy, 2018, 37(10): 29-34.
[19]
王澹,蒋传文,李磊,等. 考虑碳排放权分配及需求侧资源的安全约束机组组合问题研究[J]. 电网技术2016, 40(11): 3355-3362.
WANG Tan, JIANG Chuanwen, LI Lei, et al. Security constrained unit commitment problem considering carbon emission allocation and demand side resources[J]. Power System Technology, 2016, 40(11): 3355-3362.
[20]
马子明,钟海旺,谭振飞,等. 以配额制激励可再生能源的需求与供给国家可再生能源市场机制设计[J]. 电力系统自动化2017, 41(24): 90-96.
MA Ziming, ZHONG Haiwang, TAN Zhenfei, et al. Incenting demand and supply of renewable energy with renewable portfolio standard mechanism design of national renewable energy market[J]. Automation of Electric Power Systems, 2017, 41(24): 90-96.
PDF(1039 KB)

Accesses

Citation

Detail

Sections
Recommended

/