PDF(957 KB)
Electrothermal Energy Storage System Based on Supercritical Carbon Dioxide Cycle
ZHENG Kaiyun
Distributed Energy ›› 2020, Vol. 5 ›› Issue (5) : 43-47.
PDF(957 KB)
PDF(957 KB)
Electrothermal Energy Storage System Based on Supercritical Carbon Dioxide Cycle
Supercritical carbon dioxide cycle has many advantages, such as wide application range, high efficiency, simple system and compact equipment. Energy storage is one of the potential application fields of supercritical carbon dioxide cycle. In view of the urgent demand of large-scale power energy storage development, the conceptual design of electric thermal energy storage system based on supercritical carbon dioxide cycle is proposed. Using copper as phase change heat storage material and supercritical carbon dioxide cycle as thermoelectric conversion device, the energy storage system designs of recompression supercritical carbon dioxide cycle and simple regenerative supercritical carbon dioxide cycle mode are established, and the energy storage efficiency is analyzed by thermodynamic method. The results show that the energy storage efficiency of the electric thermal energy storage system based on supercritical carbon dioxide cycle is expected to reach 60%, and combined with low-temperature waste heat recovery, the energy storage efficiency can be further improved to 67%. And, the electric thermal energy storage system has good economy. Therefore, the electric thermal energy storage system based on supercritical carbon dioxide cycle can be used to construct large-scale electric energy storage system.
supercritical carbon dioxide cycle / electrothermal energy storage / energy storage efficiency / phase change heat storage
| [1] |
何英. 2020年我国储能规模将达42 GW[N]. 中国能源报,2018-04-09(9).
|
| [2] |
|
| [3] |
|
| [4] |
郑开云. 超临界二氧化碳动力循环研发现状及趋势分析[J]. 能源工程,2017(5): 35-41, 51.
|
| [5] |
郑开云. 超临界二氧化碳循环应用于火力发电的研究现状[J]. 南方能源建设,2017, 4(3): 39-47.
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
Siemens Gamesa inaugurates innovative electro thermal energy storage system [EB/OL]. [2019-06-12].
|
| [13] |
郑开云. 超临界工质布雷顿循环热力学分析[J]. 南方能源建设,2018, 5(3): 42-47.
|
| [14] |
郑开云. 集成吸收式热泵的超临界CO2循环聚光太阳能热发电系统[J]. 上海节能,2019(12): 969-973.
|
| [15] |
郑开云. 超临界CO2循环热电联产系统初步研究[J]. 分布式能源,2017, 2(3): 47-51.
|
| [16] |
孟祥飞,庞秀岚,崇锋,等. 电化学储能在电网中的应用分析及展望[J]. 储能科学与技术,2019, 8(): 38-42.
S1
S1
|
/
| 〈 |
|
〉 |