Calculation Model and Simulation Analysis of Mirror Field Efficiency of Trough CSP Station

ZHANG Xiaodong,NIU Haiming

Distributed Energy ›› 2020, Vol. 5 ›› Issue (5) : 56-63.

PDF(2516 KB)
PDF(2516 KB)
Distributed Energy ›› 2020, Vol. 5 ›› Issue (5) : 56-63. DOI: 10.16513/j.2096-2185.DE.2006010
Application Technology

Calculation Model and Simulation Analysis of Mirror Field Efficiency of Trough CSP Station

Author information +
History +

Abstract

Trough solar thermal power generation is the most mature photovoltaic power generation technology and has great development potential. The mirror field of trough photothermal power station is a key link in the energy conversion of photothermal power station. By tracking the sun, the rays of the sun are refracted onto the absorption tube, which is the foundation for the subsequent heat exchange and power generation process. According to the energy loss of solar radiation in trough concentrator, the mirror field efficiency mathematical model of trough photothermal power station is established, which can calculate the mirror field efficiency of various types of trough concentrator at any time in any region. The temporal and spatial factors and concentrator factors that affect the mirror field efficiency of the trough type photothermal power station are simulated and analyzed, including the influence of seasonal variation, the geographical location, the shape of the trough type concentrator, the spacing and arrangement mode on the mirror field efficiency of the trough type photothermal power station. The simulation result shows that the mirror field efficiency is higher in summer; the higher the latitude is, the higher the average mirror field efficiency is; and longitude affects the overall working time of the thermal power station.

Key words

solar-thermal power stations / trough solar energy / field efficiency / concentrator / optical loss

Cite this article

Download Citations
Xiaodong ZHANG , Haiming NIU. Calculation Model and Simulation Analysis of Mirror Field Efficiency of Trough CSP Station[J]. Distributed Energy Resources. 2020, 5(5): 56-63 https://doi.org/10.16513/j.2096-2185.DE.2006010

References

[1]
张哲旸,巨星,潘信宇,等. 太阳能光伏光热复合发电技术及其商业化应用[J]. 发电技术2020, 41(3): 220-230.
ZHANG Zheyang, JU Xing, PAN Xinyu, et al. Photovoltaic/concentrated solar power hybrid technology and its commercial application[J]. Power Generation Technology, 2020, 41(3): 220-230.
[2]
杜尔顺,张宁,康重庆,等. 太阳能光热发电并网运行及优化规划研究综述与展望[J]. 中国电机工程学报2016, 36(21): 5765-5775, 6019.
DU Ershun, ZHANG Ning, KANG Chongqing, et al. Reviews and prospects of the operation and planning optimization for grid integrated concentrating solar power[J]. Proceedings of the CSEE, 2016, 36(21): 5765-5775, 6019.
[3]
PRIETO C, OSUNA R, FERNÁNDEZ A I, et al. Molten salt facilities, lessons learnt at pilot plant scale to guarantee commercial plants; heat losses evaluation and correction[J]. Renewable Energy, 2016, 94: 175-185.
[4]
GAN Guohui, XIANG Yetao. Experimental investigation of a photovoltaic thermal collector with energy storage for power generation, building heating and natural ventilation[J]. Renewable Energy, 2020, 150: 12-22.
[5]
曲航,杨宾,赵军. 槽型抛物面太阳能电站的前景和不同冷却系统的比较分析[J]. 华北电力大学学报(自然科学版), 2009. 36(3): 64-67.
QU Hang, YANG Bin, ZHAO Jun. Simulation of parabolic trough solar power generating system for typical Chinese sites[J]. Journal of North China Electric Power University, 2009. 36(3): 64-67.
[6]
WAGNER M J. Technical Manual for the SAM Physical Trough Model[R]. NREL. 2011.
[7]
KHALIL S A, SHAFFIE A M. A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo Egypt[J]. Renewable and Sustainable Energy Reviews. 2013, 27: 853-863.
[8]
陈飞,李明,许成木,等. 腔体吸收器位置对太阳能槽式系统光热转换性能的影响[J]. 光学学报2014, 34(9): 238-244.
CHEN Fei, LI Ming, XU Chengmu, et al. Influence of photo-thermal conversion characteristics by the position of cavity absorber in parabolic trough solar concentrator[J]. Acta Optica Sinica, 2014, 34(9): 238-244.
[9]
王启扬,王金平,张祥成,等. 槽式太阳能集热器运行特性分析[J]. 热能动力工程2019, 34(10): 172-177.
WANG Qiyang, WANG Jinping, ZHANG Xiangcheng, et al. Analysis on operation characteristics of parabolic trough solar collector[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(10): 172-177.
[10]
张宏丽,王存旭,王树群,等. 抛物槽式集热器太阳入射角的计算[J]. 太阳能学报2016, 37(1): 98-102.
ZHANG Hongli, WANG Cunxu, WANG Shuqun, et al. Calculation of incident angle of parabolic trough collector[J]. Acta Energiae Solaris Sinica, 2016, 37(1): 98-102.
[11]
杨宾. 槽式太阳能直接蒸汽热发电系统性能分析与实验研究[D]. 天津:天津大学,2011.
YANG Bin. Performance analysis and experimental research on direct steam generation parabolic trough solar thermal power plant[D]. Tianjing: University of Tianjing, 2011.
[12]
FORRESTER J. The value of CSP with thermal energy storage in providing grid stability[J]. Energy Procedia, 2014, 49: 1632-1641.
[13]
BINOTTI M. Analytical approach treating three—dimensional geometrical effects of parabolic trough collectors: preprint[R]. USA: National Renewable Energy Laboratory, 2012.
[14]
WANG J, WANG J, BI X, et a1. Performance simulation comparison for parabolic trough solar collectors in China[J]. International Journal of Photoenergy, 2016, 18: 1-16.
[15]
PADILLA R V. Simplified methodology for designing parabolic trough solar power plants[D]. Florida: University of South Florida, 2011.
[16]
高亚龙. 基于AnySimu平台的火电厂电网络潮流计算研究[D]. 北京:华北电力大学,2013.
GAO Yalong. The research of AnySimu platform-based thermal power plant electric network flow calculation [D]. Beijing: North China Electric Power University, 2013.

Funding

National Key Research and Development Projects(2018YFB1500801)
PDF(2516 KB)

Accesses

Citation

Detail

Sections
Recommended

/