Research on Load Distribution Method Based on Adaptive Multi-Objective Weighted Particle Swarm Algorithm

WEI Jiazhu

Distributed Energy ›› 2020, Vol. 5 ›› Issue (6) : 7-12.

PDF(1117 KB)
PDF(1117 KB)
Distributed Energy ›› 2020, Vol. 5 ›› Issue (6) : 7-12. DOI: 10.16513/j.2096-2185.DE.2008009
Basic Research

Research on Load Distribution Method Based on Adaptive Multi-Objective Weighted Particle Swarm Algorithm

Author information +
History +

Abstract

At this stage, when studying the economic and environmental load distribution of the power grid, the conversion of the multi-objective optimization problem into a single-objective optimization problem generally requires traversing the reorganization of the weights for comparison. Moreover, the obtained weight combination has a low precision, and there is still a certain gap between the optimal weight combination. In view of this situation, an adaptive multi-objective weighted particle swarm optimization (AMWPSO) algorithm is proposed that uses the number of generator sets and the number of optimization targets to determine the particle dimension, and uses the data of the IEEE 30 bus system including 6 units to account for and ignore the network. Solve the load distribution model under two conditions. The solution results show that the proposed optimization algorithm can automatically generate the weight ratio of each target on the one hand, avoiding the tedious weight comparison calculation. On the other hand, compared with the combination of manually set neighboring weights, the calculated target weights have high accuracy and perform better under the two comprehensive targets of power generation cost and pollutant emission.

Key words

multi-objective optimization / environmental-economic dispatch(EED) / weight method / particle swarm optimization algorithm

Cite this article

Download Citations
Jiazhu WEI. Research on Load Distribution Method Based on Adaptive Multi-Objective Weighted Particle Swarm Algorithm[J]. Distributed Energy Resources. 2020, 5(6): 7-12 https://doi.org/10.16513/j.2096-2185.DE.2008009

References

[1]
黄松,王艳,纪志成. 多目标粒子群算法的动态多燃料经济环境负荷分配[J]. 控制与决策2018, 33(7): 1255-1263.
HUANG Song, WANG Yan, JI Zhicheng. Dynamic multiple-fuels economic environmental dispatch using multi-objective particle swarm optimization[J]. Control and Decision, 2018, 33(7): 1255-1263.
[2]
MAULIK A, DAS D. Optimal power dispatch considering load and renewable generation uncertainties in an AC-DC hybrid microgrid[J]. IET Generation, Transmission & Distribution, 2019, 13(7): 1164-1176.
[3]
QIU J, ZHAO J, WANG D. Multi-objective generation dispatch considering the trade-off between economy and security[J]. IET Generation, Transmission & Distribution, 2017, 12(3): 633-642.
[4]
MAITY D, BANERJEE S, CHANDA C K. Multi-objective economic emission load dispatch using modified biogeography based optimization algorithm[C]// Power India International Conference. Bikaner, India: IEEE, 2017.
[5]
JORDAN R. A solution to the combined economic and emission dispatch using hybrid PSOGSA algorithm[J]. Applied Artificial Intelligence, 2016, 30(5): 445-474.
[6]
李滨,粟归玉. 低碳电力下多目标机组组合优化调度[J]. 电力系统及其自动化学报2015, 27(11): 1-8.
LI Bin, SU Guiyu. Optimalscheduling of multi-target units under low carbon power[J]. Proceedings of the CSU-EPSA, 2015, 27(11): 1-8.
[7]
谢鲁冰,李国华,高洪宝. 基于多目标模糊层次分析法的厂级负荷分配研究[J]. 应用能源技术2012(8): 24-32.
XIE Lubing, LI Guohua, GAO Hongbao. Investigations on plant-level load dispatch based on a multi-objective programming[J]. Applied Energy Technology, 2012(8): 24-32.
[8]
刘科研,季玉琦,陆凌芝,等. 基于负荷分布匹配与熵权法的配电网无功优化[J]. 电网技术2017, 41(12): 3980-3988.
LIU Kejian, JI Yuqi, LU Lingzhi, et al. Reactive power optimization in distribution network based on load distribution matching and entropy weight method[J]. Power System Technology, 2017, 41(12): 3980-3988.
[9]
王宁玲,付鹏,陈德刚,等. 大数据分析方法在厂级负荷分配中的应用[J]. 中国电机工程学报2015, 35(1): 68-73.
WANG Ningling, FU Peng, CHEN Degang, et al. Application of big data analytics in plant-level load dispatching of power plant [J]. Proceedings of the CSEE, 2015, 35(1): 68-73.
[10]
纪川川. 基于改进粒子群的环境经济电力负荷分配[D]. 锦州:辽宁工业大学,2018.
JI Chuanchuan. Power system load distribution based on multi-objective particle swarm optimization algorithm[D]. Jinzhou: Liaoning University of Technology, 2018.
[11]
邱晓燕,赵劲帅,史光耀,等. 基于HSMOPSO算法的微电网经济与环保协同优化方[J]. 高电压技术2017, 43(4): 1223-1230.
QIU Xiaoyan, ZHAO Jinshuai, SHI Guangyao, et al. Collabo-rative optimization of microgrid economic and environmental protection based on HSMOPSO algorithm[J]. High Voltage Engineering, 2017, 43(4): 1223-1230.
[12]
钱虹,姚一鸣,刘刚. 目标可控的AGC调节容量的优化分配[J]. 上海电力学院学报2013, 29(4): 321-324.
QIAN Hong, YAO Yiming, LIU Gang. Optimal allocation of target controllable AGC regulation capacity[J]. Journal of Shanghai University of Electric Power, 2013, 29(4): 321-324.
[13]
赖纪东,谢天月,苏建徽,等. 基于粒子群优化算法的孤岛微电网电压不平衡补偿协调控制[J]. 电力系统自动化2020, 44(16): 121-141.
LAI Jidong, XIE Tianyue, SU Jianhui, et al. Coordinated control of voltage unbalance compensation in islanded microgrid based on particle swarm optimization algorithm[J]. Automation of Electric Power Systems, 2020, 44(16): 121-141.
[14]
郑文坚,牛海清,宋廷汉,等. 基于热场仿真及改进粒子群算法的电缆群负荷优化方法[J]. 高电压技术2019, 45(6): 2010-2016.
ZHENG Wenjian, NIU Haiqing, SONG Tinghan, et al. Load optimization method of cluster power cables based on thermal field simulation and modified particle swarm algorithm[J]. High Voltage Engineering, 2019, 45(6): 2010-2016.
[15]
ZOU Dexuan, LI S, LI Zongyan, et al. A new global particle swarm optimization for the economic emission dispatch with or without transmission losses[J]. Energy Conversion and Management, 2017, 139: 45-70.
[16]
LIU T, JIAO L, MA W, et al. Cultural quantum-behaved particle swarm optimization for environmental/economic dispatch[J]. Applied Soft Computing, 2016, 48: 597-611.
PDF(1117 KB)

Accesses

Citation

Detail

Sections
Recommended

/