Safety Analysis of Cascaded Utilization of Retired Batteries

LIU Yuqing, LI Jianlin, ZHANG Jianhui, MA Suliang

Distributed Energy ›› 2021, Vol. 6 ›› Issue (1) : 7-13.

PDF(1348 KB)
PDF(1348 KB)
Distributed Energy ›› 2021, Vol. 6 ›› Issue (1) : 7-13. DOI: 10.16513/j.2096-2185.DE.2106007
Review

Safety Analysis of Cascaded Utilization of Retired Batteries

Author information +
History +

Abstract

In order to solve the problems of environmental pollution and resource shortage, our government strongly supports the development of the new energy vehicle industry. With the increase of the number of electric vehicles, how to recycle the retired batteries for automobile has become a key issue for the development of the industry. The safety of cascaded utilization of retired batteries was considered from the aspects of domestic and foreign policy analysis and safety analysis of the cascaded utilization process. Cascaded utilization includes decommissioned batteries collection and disassembly, screening, recombination, application, etc., focusing on screening and recombination, combined with the health status of decommissioned batteries and the state evaluation of the remaining capacity, consistency sorting safety analysis. At the same time, the problem of poor battery consistency was improved according to the existing recombination technology, and the safety of the recombination system was evaluated. On the basis of the above analysis, the hidden safety risks in each link of the phased utilization of retired batteries are presented, and the corresponding management policies are proposed to guarantee the safety of the cascaded utilization of batteries, which provides a reference for the future development of the cascaded utilization system of retired batteries.

Key words

cascaded utilization of battery / battery status assessment / security / consistent sorting / equilibrium structure / flexible group technology

Cite this article

Download Citations
Yuqing LIU , Jianlin LI , Jianhui ZHANG , et al. Safety Analysis of Cascaded Utilization of Retired Batteries[J]. Distributed Energy Resources. 2021, 6(1): 7-13 https://doi.org/10.16513/j.2096-2185.DE.2106007

References

[1]
江凯. 基于梯级利用的新能源汽车动力电池回收利用研究[J]. 蓄电池2019, 56(2): 51-54, 96.
JIANG Kai. Research on the recycling of power batteries of new energy vehicles based on rung utilization[J]. Chinese LABAT Man, 2019, 56(2): 51-54, 96.
[2]
王斑. 我国新能源汽车动力电池回收体系的发展现状及建议[J]. 物流科技2019, 42(2): 72-75.
WANG Ban. Development status and suggestions of power battery recovery system for new energy vehicles in China[J]. Logistics Sci-Tech, 2019, 42 (2): 72-75.
[3]
国务院. 国务院关于印发节能与新能源汽车产业发展规划(2012—2020年)的通知[EB/OL]. (2012-07-09)[2020-09-30].
[4]
吴盛军. 微电网中电动汽车储能优化控制及储能梯级利用研究[D]. 南京:东南大学,2017.
WU Shengjun. Reaearch on the electric vehicles and energy storage optimal control in microgrid and battery second use[D]. Nanjing: Southeast University, 2017.
[5]
刘文婷. 退役电池梯次利用须把好安全关[N]. 新能源汽车报,2019-06-03(004).
[6]
来小康. 关于动力电池梯次利用的一些思考[J]. 储能科学与技术2020, 9(2): 598-602.
LAI Xiaokang. Opinions on the reuse of retired power batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 598-602.
[7]
李雪早. 新能源汽车动力电池回收利用浅析[J]. 汽车维护与修理2018(19): 1-9.
[8]
夏重凯. 动力电池梯次利用现状及政策分析[J]. 汽车与配件2016(38): 42-45.
[9]
杨若岑,冬雷,廖晓钟,等. 电池剩余容量估算方法综述[J]. 电气技术2019, 20(10): 1-5, 57.
YANG Ruocen, DONG Lei, LIAO Xiaozhong, et al. A review on battery remaining capacity estimation[J]. Electrical Engineering, 2019, 20(10): 1-5, 57.
[10]
吴蒙. 退役动力蓄电池梯次利用现状、问题及对策[J]. 资源再生2019(10): 28-31.
[11]
孙国跃,陈勇. 退役动力电池梯次利用筛选指标的实验研究[J]. 电源技术2018, 42(12): 1818-1821.
SUN Guoyue, CHEN Yong. Experimental study on the screening criteria of echelon use of returned power battery[J]. Chinese Journal of Power Sources, 2018, 42(12): 1818-1821.
[12]
朱运征,李志强,王浩,等. 集装箱式储能系统用梯次利用锂电池组的一致性管理研究[J]. 电源学报2018, 16(4): 80-86.
ZHU Yunzheng, LI Zhiqiang, WANG Hao, er al. Research on consistency management of echelon use of li-ion battery pack for container-type energy storage system[J]. Journal of Power Supply, 2018, 16(4): 80-86.
[13]
谌虹静. 锂离子动力电池剩余寿命预测与退役电池分选方法研究[D]. 南京:东南大学,2019.
CHEN Hongjing. Reaearch on remaining useful life prediction of lithium-ion battery and screening method of recycling battery[D]. Nanjing: Southeast University, 2019.
[14]
许梦蝶. 退役电池储能利用主动均衡控制系统研究与设计[D]. 武汉:武汉理工大学,2018.
XU Mengdie. Reaesrch and design of active balance control system for decommissioning battery energy storage[D]. Wuhan: Wuhan University of Technology, 2018.
[15]
吴小员,王俊祥,田维超,等. 基于应用需求的退役电池梯次利用安全策略[J]. 储能科学与技术2018, 7(6): 1094-1104.
WU Xiaoyuan, WANG Junxiang, TIAN Weichao, et al. Application-derived safety strategy for secondary utilization of retired power battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1094-1104.
[16]
李建林,李雅欣,吕超,等. 退役动力电池梯次利用关键技术及现状分析[J]. 电力系统自动化2020, 44(13): 172-183.
LI Jianlin, LI Yaxin, LYU Chao, et al. Keytechnology and research status of cascaded utilization in decommissioned power battery[J]. Automation of Electric Power Systems, 2020, 44(13): 172-183.
[17]
步传宇,姜昆,任军,等. 基于改进型ASRCKF算法的锂离子电池荷电状态估计[J]. 广东电力2020, 33(10): 16-25.
BU Chuanyu, JIANG Kun, REN Jun, et al. Estimation of SOC of Lithium-ion Battery Based on Improved ASRCKF[J]. Guangdong Electric Power, 2019, 33(10): 16-25.
[18]
任东生,冯旭宁,韩雪冰,等. 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术2018, 7(6): 957-966.
REN Dongsheng, FENG Xuning, HAN Xuebing, et al. Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6): 957-966.
[19]
王其钰,王朔,张杰男,等. 锂离子电池失效分析概述[J]. 储能科学与技术2017, 6(5): 1008-1025.
WANG Qiyu, WANG Shuo, ZHANG Jienan, et al. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025.
[20]
赵光金,邱武斌. 退役磷酸铁锂电池容量一致性及衰减特征研究[J]. 全球能源互联网2018, 1(3): 383-388.
ZHAO Guangjin, QIU Wubin. Research on consistency of capacity performance and it's fading characteristics for retired power batteries[J]. Journal of Global Energy Interconnection, 2018, 1(3): 383-388.
[21]
郭杰,王小鹏,孙春霞,等. 动力电池串并联结构重组的均衡充电方法[J]. 电力自动化设备2019, 39(5): 163-168.
GUO Jie, WANG Xiaopeng, SUN Chunxia, er al. Balanced charging method of power batteries with reconstructed series-parallel structure[J]. Electric Power Automation Equipment, 2019, 39(5): 163-168.
[22]
徐洁. 基于下垂控制的DC-DC级联型储能变流器研究[D]. 北京:北京交通大学,2019.
XU Jie. Research on DC-DC cascaded energy storage converter based on droop control[D]. Beijing: Beijing Jiaotong University, 2019.
[23]
崔强. 适用于梯次利用电池的半桥级联型储能系统的研制[D]. 北京:北京交通大学,2019.
CUIQiang. Development of a half-bridge cascading energy storage system for secondary use battery[D]. Beijing: Beijing Jiaotong University, 2019.
[24]
许苑,李涛,周杨林,等. 退役电池储能系统中可重构电池网络技术应用[J]. 电源技术2020, 44(6): 908-910.
XU Yuan, LI Tao, ZHOU Yanglin, et al. application of reconfigurable battery network in retired battery energy storage system[J]. Chinese Journal of Power Sources, 2020, 44(6): 908-910.
[25]
王玕,赵世伟,杨向宇. 基于电压闭环滑模控制的变步长电导增量法MPPT策略[J]. 可再生能源2018, 36(4): 506-511.
WANG Gan, ZHAO Shiwei, YANG Xiangyu. MPPT strategy of variable step-size incremental conductance algorithm based on voltage closed-loop sliding mode control[J]. Renewable Energy Resources, 2018, 36(4): 506-511.
[26]
王立舒,王慧杰,赵嘉玮,等. 基于电导-模糊双模式的MPPT优化控制[J]. 太阳能学报2017, 38(7): 1847-1853.
Wang Lishu, Wang Huijie, Zhao Jiawei, et al. INc-fuzzy dual mode for PV MPPT optimization control[J]. ACTA Energiae Solaris Sinica, 2017, 38(7): 1847-1853.
[27]
刘爽,牟龙华,许旭锋,等. 电力电子器件故障对微电网运行可靠性的影响[J]. 电力系统保护与控制2017, 45(24): 63-70.
LIU Shuang, MU Longhua, XU Xufeng, et al. Research on power electronic devices failures' effect on microgrid operational reliability[J]. Power System Protection and Control, 2017, 45(24): 63-70.
[28]
韩华春,史明明,袁晓冬. 动力电池梯次利用研究概况[J]. 电源技术2019, 43(12): 2070-2073.
HAN Huachun, SHI Mingming, YUAN Xiaodong. Review on echelon utilization of power battery[J]. Chinese Journal of Power Sources, 2019, 43(12): 2070-2073.

Funding

Natural Science Foundation of Beijing(21JC0026)
PDF(1348 KB)

Accesses

Citation

Detail

Sections
Recommended

/