Research on Dynamic Droop Control of Energy Storage Converter in DC Microgrid

WANG Yaxu, SONG Weigong, LI Yongjun, WANG Chunqiang

Distributed Energy ›› 2021, Vol. 6 ›› Issue (2) : 61-67.

PDF(1637 KB)
PDF(1637 KB)
Distributed Energy ›› 2021, Vol. 6 ›› Issue (2) : 61-67. DOI: 10.16513/j.2096-2185.DE.2106014
Basic Research

Research on Dynamic Droop Control of Energy Storage Converter in DC Microgrid

Author information +
History +

Abstract

Considering the power distribution and bus stability of DC microgrid, a dynamic droop control method of energy storage converter based on the state of charge of energy storage battery was proposed. By introducing the real-time SOC value of energy storage battery into the droop control coefficient, the load differential power was distributed among the parallel energy storage batteries according to their own SOC value, so as to realize the balance of power output and SOC secondary control of DC bus voltage and compensation of virtual impedance can restrain DC bus voltage deviation caused by droop control, improve damping characteristics of DC converter and enhance dynamic stability of DC bus voltage. The control parameters were analyzed by Matlab/Simulink simulation, and the correctness of the proposed control strategy was verified.

Key words

DC microgrid / converter / state of charge(SOC) / droop control / dynamic characteristics

Cite this article

Download Citations
Yaxu WANG , Weigong SONG , Yongjun LI , et al. Research on Dynamic Droop Control of Energy Storage Converter in DC Microgrid[J]. Distributed Energy Resources. 2021, 6(2): 61-67 https://doi.org/10.16513/j.2096-2185.DE.2106014

References

[1]
王皓,张舒淳,李维展,等. 储能参与电力系统应用研究综述[J]. 电工技术2020(3): 21-24, 27.
WANG Hao, ZHANG Shuchun, LI Weizhan, et al. Review on the application of energy storage in power system[J]. Electrical Engineering, 2020(3): 21-24, 27.
[2]
刘畅,卓建坤,赵东明,等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报2020, 40(1): 1-18.
LIU Chang, ZHUO Jiankun, ZHAO Dongming, et al. A review of research on flexible and safe operation of renewable energy microgrid using energy storage system[J]. Proceedings of the CSEE, 2020, 40(1): 1-18.
[3]
朱珊珊,汪飞,郭慧,等. 直流微电网下垂控制技术研究综述[J]. 中国电机工程学报2018, 38(1): 72-84.
ZHU Shanshan, WANG Fei, GUO Hui, et al. Review of DC microgrid droop control technology[J]. Proceedings of the CSEE, 2018, 38(1): 72-84.
[4]
李霞林,郭力,王成山,等. 直流微电网关键技术研究综述[J]. 中国电机工程学报2016, 36(1): 2-16.
LI Xialin, GUO Li, WANG Chengshan, et al. Review on key technologies of DC microgrid[J]. Proceedings of the CSEE, 2016, 36(1): 2-16.
[5]
张犁,孙凯,吴田进,等. 基于光伏发电的直流微电网能量变换与管理[J]. 电工技术学报2013, 28(2): 248-254.
ZHANG Li, SUN Kai, WU Tianjin, et al. Energy conversion and management of DC microgrid based on photovoltaic power generation[J]. Actaelectro TechnicsSinica, 2013, 28(2): 248-254.
[6]
支娜,张辉,肖曦. 提高直流微电网动态特性的改进下垂控制策略研究[J]. 电工技术学报2016, 31(3): 31-39.
ZHI Na, ZHANG Hui, XIAO Xi. Research on improved droop control strategy for improving dynamic characteristics of DC microgrid[J]. Transactions of China Electrotechnical Society, 2016, 31(3): 31-39.
[7]
DIAZ N. L, DRAGICEVIC, VASQUEZ J C, et al. Intelligent distributed generation and storage units for DC microgrids—A new concept on cooperative control without communications beyond droop control[J]. IEEE Transactions on Smart Grid, 2014, 5(5): 2476-2485.
[8]
ANAND S, FERNANDES B G, GUERRERO J. Distributed control to ensure proportional load sharing and improve voltage regulation in low-voltage DC microgrids[J]. IEEE Transactions on Power Electronics, 2013, 28(4): 1900-1913.
[9]
LU X, GUERRERO J M, SUN K, et al. An improved droop control method for DC microgrids based on low bandwidth communication with DC bus voltage restoration and enhanced current sharing accuracy[J]. IEEE Transactions on Power Electronics, 2014, 29(4): 1800-1812.
[10]
杨捷,金新民,吴学智,等. 一种适用于直流微电网的改进型电流负荷分配控制策略[J]. 中国电机工程学报2016, 36(1): 59-67.
YANG Jie, JIN Xinmin, WU Xuezhi, et al. An improved loadcurrent sharing control method in DC microgrids[J]. Proceedings of the CSEE, 2016, 36(1): 59-67(in Chinese).
[11]
MORSTYN T, SAVKIN A, HREDZAK B, et al. Multi-agent sliding mode control for state of charge balancing between battery energy storage systems distributed in a DC microgrid[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 4735-4743.
[12]
王成山,武震,李鹏. 微电网关键技术研究[J]. 电工技术学报2014, 29(2): 1-12.
WANG Chengshan, WU Zhen, LI Peng. Research on key technologies of microgrid[J]. Transactions of China Electro-technical Society, 2014, 29(2): 1-12.
[13]
LI X P, LIU B Q, Zhuo F, et al. A novel control strategy based on DC bus signaling for DC micro-grid withphotovoltaic and battery energy storage[C]//2016 ChinaInternational Conference on Electricity Distribution(CICED). Xi'an, China: IEEE, 2016: 1-5.
[14]
张继红,赵锐,高雷,等. 直流微网母线电压稳定控制策略[J/OL]. 电网技术[2021-01-28].
ZHANG Jihong, ZHAO Rui, GAO Lei, et al. DC microgrid bus voltage stability control strategy[J/OL]. Power Grid Technology[2021-01-28].
[15]
刘勇,刘鹏,盘宏斌,等. 基于改进下垂控制的多逆变器功率分配控制[J]. 电气传动2020, 50(12): 83-87.
LIU Yong, LIU Peng, PAN Hongbin, et al. Multi inverter power distribution control based on improved droop control[J]. Electric drive, 2020, 50(12): 83-87.
[16]
米阳,蔡杭谊,袁明瀚,等. 直流微电网分布式储能系统电流负荷动态分配方法[J]. 电力自动化设备2019, 39(10): 17-23.
MI Yang, CAI Hangyi, YUAN Minghan, et al. Dynamic current load distribution method for distributed energy storage system of DC microgrid[J]. Power Automation Equipment, 2019, 39(10): 17-23.
[17]
陆晓楠,孙凯,黄立培,等. 直流微电网储能系统中带有母线电压跌落补偿功能的负荷功率动态分配方法[J]. 中国电机工程学报2013, 33(16): 37-46.
LU Xiaonan, SUN Kai, HUANG Lipei, et al. Load power dynamic distribution method with bus voltage sag compensation function in DC microgrid energy storage system[J]. Proceedings of the CSEE, 2013, 33(16): 37-46
[18]
徐朋. 基于SoC均衡控制的直流微电网储能系统研究[D]. 马鞍山市:安徽工业大学,2018.
XU Peng. Research on energy storage system based on SoC balancing control for DC microgrid[D]. Maanshan: Anhui University, 2018.
[19]
王俊凯,牟龙华,刘鑫. 基于动态虚拟阻抗的多并联逆变器间环流抑制控制策略[J]. 电力自动化设备2021, 41(4): 94-100.
WANG Junkai, MOU Longhua, LIU Xin. Control strategy of circulating current suppression between multiple parallel inverters based on dynamic virtual impedance[J]. Power Automation Equipment, 2021, 41(4): 94-100.
PDF(1637 KB)

Accesses

Citation

Detail

Sections
Recommended

/