Day-Ahead Photovoltaic Power Forecasting Based on Particle Swarm Optimization and Least Squares Support Vector Machine

YIN Yue

Distributed Energy ›› 2021, Vol. 6 ›› Issue (2) : 68-74.

PDF(1457 KB)
PDF(1457 KB)
Distributed Energy ›› 2021, Vol. 6 ›› Issue (2) : 68-74. DOI: 10.16513/j.2096-2185.DE.2106019
Basic Research

Day-Ahead Photovoltaic Power Forecasting Based on Particle Swarm Optimization and Least Squares Support Vector Machine

Author information +
History +

Abstract

Accurate prediction of output power of photovoltaic power plant is one of the main ways to promote grid connected photovoltaic power generation and improve the stability of power grid operation. This paper proposed a day-ahead photovoltaic power forecasting method based on particle swarm optimization and least squares support vector machine (PSO-LSSVM). This method used the global search ability of PSO algorithm to obtain the penalty factor and kernel function width of LSSVM, which effectively solved the problem that LSSVM is difficult to find the optimal parameters quickly and accurately. Then, the historical data of numerical weather prediction (NWP) and photovoltaic power were used to train the PSO-LSSVM model, and the trained PSO-LSSVM model was used to forecast the day-ahead photovoltaic power. The forecasting results of PSO-LSSVM, long short-term memory(LSTM), least squares support vector machine(LSSVM) and PSO-BP models were compared and analyzed, and the comparison results show that the forecasting accuracy of PSO-LSSVM model is higher than those of LSTM, LSSVM and particle swarm optimization and back propagation (PSO-BP) models, which proves the superiority of the PSO-LSSVM forecasting model.

Key words

particle swarm optimization (PSO) / least squares support vector machine (LSSVM) / photovoltaic power forecasting

Cite this article

Download Citations
Yue YIN. Day-Ahead Photovoltaic Power Forecasting Based on Particle Swarm Optimization and Least Squares Support Vector Machine[J]. Distributed Energy Resources. 2021, 6(2): 68-74 https://doi.org/10.16513/j.2096-2185.DE.2106019

References

[1]
吕鑫,祁雨霏,董馨阳,等. 2020年光伏及风电产业前景预测与展望[J]. 北京理工大学学报(社会科学版), 2020, 22(2): 20-25.
LV Xin, QI Yufei, DONG Xinyang, et al. Outlook and prospect of the photovoltaic and wind power industry in 2020[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2020, 22(2): 20-25.
[2]
黄少雄,王璨,孔庆竹,等. 含短期预测的光伏配电网智能调压策略[J]. 热力发电2020, 49(7): 1-8.
HUANG Shaoxiong, WANG Can, KONG Qingzhu, et al. Intelligent voltage regulation strategy of photovoltaic distribution network considering short-term forecasting[J]. Thermal Power Generation, 2020, 49(7): 1-8.
[3]
吴攀. 光伏发电系统发电功率预测[J]. 发电技术2020, 41(3): 231-236.
WU Pan. Power forecasting of photovoltaic power generation system[J]. Power Generation Technology, 2020, 41(3): 231-236.
[4]
郑熠旻. 考虑功率偏差的工业园区光伏与储能联合优化[J]. 分布式能源2019, 4(3): 16-20.
ZHENG Yimin. Joint optimization of photovoltaic and energy storage inindustrial parks considering power deviation[J]. Distributed Energy, 2019, 4(3): 16-20.
[5]
肖白,王成龙,董凌,等. 基于多源数据时点匹配的发电功率数据融合方法[J]. 分布式能源2019, 4(5): 29-34.
XIAO Bai, WANG Chenglong, DONG Ling, et al. Power data fusion method based on time-point matching of multi-source data[J]. Distributed Energy, 2019, 4(5): 29-34.
[6]
何锋,章义军,章建华,等. 基于相似日和分位数回归森林的光伏发电功率概率密度预测[J]. 热力发电2019, 48(7): 64-69.
HE Feng, ZHANG Yijun, ZHANG Jianhua, et al. Forecasting of photovoltaic power generationprobability density based on similar day and quantile regression forests[J]. Thermal Power Generation, 2019, 48(7): 64-69.
[7]
龚莺飞,鲁宗相,乔颖,等. 光伏功率预测技术[J]. 电力系统自动化2016, 40(4): 140-151.
GONG Yingfei, LU Zongxiang, QIAO Ying, et al. An overview of photovoltaic energy system output forecasting technology[J]. Automation of Electric Power System, 2016, 40(4): 140-151.
[8]
赵书强,胡利宁,田捷夫,等. 基于中长期风电光伏预测的多能源电力系统合约电量分解模型[J]. 电力自动化设备2019, 39(11): 13-19.
ZHAO Shuqiang, HU Lining, TIAN Jiefu, et al. Contract power decomposition model of multi-energy power system based on mid-long term wind power and photovoltaic electricity forecasting[J]. Electric Power Automation Equipment, 2019, 39(11): 13-19.
[9]
张俊,贺旭,陆春良,等. 基于数值天气预报的光伏功率短期预测分类组合算法[J]. 广东电力2019, 32(6): 55-60.
ZHANG Jun, HE Xu, LU Chunliang, et al. Classification and combination algorithm for photovotaic power short-term forecasting based on numerical weather prediction[J]. Guangdong Electric Power, 2019, 32(6): 55-60.
[10]
李雯,魏斌,韩肖清,等. 面向滚动优化调度的光伏发电功率日内超短期预测[J]. 电力系统及其自动化学报2020, 32(11): 43-49.
LI Wen, WEI Bin, HAN Xiaoqing, et al. Intraday ultra-short-term forecasting of photovoltaic power generation for rolling optimal scheduling[J]. Proceedings of the CSU-EPSA, 2020, 32(11): 43-49.
[11]
赖昌伟,黎静华,陈博,等. 光伏发电出力预测技术研究综述[J]. 电工技术学报2019, 34(6): 1201-1217.
LAI Changwei, LI Jinghua, CHEN Bo, et al. Review of photovoltaic power output prediction technology[J]. Transactions of China Electro technical Society, 2019, 34(6): 1201-1217.
[12]
叶林,陈政,赵永宁,等. 基于遗传算法—模糊径向基神经网络的光伏发电功率预测模型[J]. 电力系统自动化2015, 39(16): 16-22.
YE Lin, CHEN Zheng, ZHAO Yongning, et al. Photovoltaic power forecasting model based on genetic algorithm and fuzzy radial basis function neural network[J]. Automation of Electric Power System, 2015, 39(16): 16-22.
[13]
崔洋,孙银川,常倬林. 短期太阳能光伏发电预测方法研究进展[J]. 资源科学2013, 35(7): 1474-1481.
CUI Yang, SUN Yinchuan, CHANG Zhuolin. A review of short-term solar photovoltaic power generation prediction methods[J]. Resources Science, 2013, 35(7): 1474-1481.
[14]
荆博. 光伏电站短期功率预测方法研究[D]. 镇江:江苏大学,2017.
JING Bo. Research on methodology of short-term photovoltaic power forecasting[D]. Zhenjiang: Jiangsu University, 2017.
[15]
赵滨滨,王莹,王彬,等. 基于ARIMA时间序列的分布式光伏系统输出功率预测方法研究[J]. 可再生能源2019, 37(6): 820-823.
ZHAO Binbin, WANG Ying, WANG Bin, et al. Photovoltaic power prediction in distribution network based on ARIMA model time series[J]. Renewable Energy Resources, 2019, 37(6): 820-823.
[16]
沈金荣,惠杰,倪莹,等. 环境因素对光伏发电量综合回归分析[J]. 可再生能源2016, 34(7): 997-1002.
SHEN Jinrong, HUI Jie, NI Ying, et al. Comprehensive regression analysis of environmental factors on PV generation[J]. Renewable Energy Resources, 2016, 34(7): 997-1002.
[17]
蒋峰,王宗耀,张鹏. 基于灰色-加权马尔可夫链的光伏发电量预测[J]. 电力系统保护与控制2019, 47(15): 55-60.
JIANG Feng, WANG Zongyao, ZHANG Peng. Forecasting powergeneration of solar photovoltaic system based on the combination of grey model and weighted markov chain[J]. Power System Protection and Control, 2019, 47(15): 55-60.
[18]
张雨金,杨凌帆,葛双冶,等. 基于Kmeans-SVM的短期光伏发电功率预测[J]. 电力系统保护与控制2018, 46(21): 118-124.
ZHANG Yujin, YANG Lingfan, GE Shuangye, et al. Short-term photovoltaic power forecasting based on kmeans algorithm and support vector machine[J]. Power System Protection and Control, 2018, 46(21): 118-124.
[19]
殷豪,陈云龙,孟安波,等. 基于二次自适应支持向量机的光伏输出功率预测[J]. 太阳能学报2019, 40(7): 1866-1873.
YIN Hao, CHEN Yunlong, MENG Anbo, et al. Forecasting photovoltaic power based on quadric self-adaptive SVM model[J]. Acta Energiae Solaris Sinica, 2019, 40(7): 1866-1873.
[20]
陈锦铭,郭雅娟,伍旺松,等. 基于数据预处理与特征表示的多核SVM短期光伏发电预测[J]. 水电能源科学2018, 36(9): 205-208, 147.
CHEN Jinming, GUO Yajuan, WU Wangsong, et al. Multi-kernel SVM short-term PV power prediction based on data pre-preocessing and characteristic representation[J]. Water Resources and Power, 2018, 36(9): 205-208, 147.
PDF(1457 KB)

Accesses

Citation

Detail

Sections
Recommended

/