Optimization of Wind Turbine Pitch Strategy With Pitch Bearing Life Extension as Objective

WANG Yu, HAN Shuang, WANG Qile, LIU Yongqian

Distributed Energy ›› 2021, Vol. 6 ›› Issue (2) : 32-39.

PDF(1296 KB)
PDF(1296 KB)
Distributed Energy ›› 2021, Vol. 6 ›› Issue (2) : 32-39. DOI: 10.16513/j.2096-2185.DE.2106025
Basic Research

Optimization of Wind Turbine Pitch Strategy With Pitch Bearing Life Extension as Objective

Author information +
History +

Abstract

The traditional variable speed variable pitch wind turbine adopts the optimal pitch angle pitch strategy of proportional integral differential (PID) control. The pitch is frequent, and the pitch bearing is easy to damage and difficult to repair. Therefore, this paper proposes an optimization strategy of pitch system to reduce the pitch action and prolong the life of the pitch bearing. Based on the optimal pitch angle strategy, the threshold index of wind speed fluctuation is proposed to establish the optimization model. Finally, taking the threshold index of wind speed fluctuation as the input condition, the optimization model is solved based on sparrow search algorithm. The proposed optimization model is applied to a wind farm, and the results show that compared with the traditional model, the life of pitch bearing is increased, the overall income is improved, and it is practical.

Key words

wind turbine / pitch bearing / pitch optimize / sparrow search algorithm

Cite this article

Download Citations
Yu WANG , Shuang HAN , Qile WANG , et al. Optimization of Wind Turbine Pitch Strategy With Pitch Bearing Life Extension as Objective[J]. Distributed Energy Resources. 2021, 6(2): 32-39 https://doi.org/10.16513/j.2096-2185.DE.2106025

References

[1]
郑辉,芮晓明,黄浙. 风电机组变桨轴承变形研究与有限元分析[J]. 中国电力2017, 50(3): 143-146, 160.
ZHENG Hui, RUI Xiaoming, HUANG Zhe. Deformation research and finite element analysis on pitch bearing of wind turbine[J]. Electric Power, 2017, 50(3): 143-146, 160.
[2]
黄浩然. 风电变桨轴承柔性支承研究与设计参数分析[D]. 保定:华北电力大学,2012.
HUANG Haoran. Research on flexibly supported wind turbine pitch bearing and its design parameters[D]. Baoding: North China Electric Power University, 2012.
[3]
张涛,陈浩,田峰,等. 大规模1.5 MW风力发电机变桨轴承开裂行为分析[J]. 中国电机工程学报2019, 39(21): 6344-6351.
ZHANG Tao, CHEN Hao, TIAN Feng, et al. Analysis on large scale cracking damage for pitch bearings of 1.5 MW wind power generators[J]. Proceedings of the CSEE, 2019, 39(21): 6344-6351.
[4]
周正强. 风力发电机组变桨轴承断裂失效分析[J]. 装备制造技术2019(8): 99-103.
ZHOU Zhengqiang. Fracture failure analysis on pitch bearing of wind turbine[J]. Equipment Manufacturing Technology, 2019(8): 99-103.
[5]
王剑彬,孟鹏飞,姚兵印. 风电液压型变桨轴承失效机制及优化方案研究[J]. 风能2019(4): 92-98.
[6]
齐涛,董姝言,苏凤宇. MW级风机变桨轴承与轮毂连接螺栓的强度分析[J]. 机电工程2014, 31(12): 1587-1590, 1652.
QI Tao, DONG Shuyan, SU Fengyu. Strength analysis of pitch-bearing-hub bolt connection in MW wind turbine[J]. Journal of Mechanical & Electrical Engineering, 2014, 31(12): 1587-1590, 1652.
[7]
LIU Z, ZHANG L. Naturally damaged wind turbine blade bearing fault detection using novel iterative nonlinear filter and morphological analysis[J]. IEEE Transactions on Industrial Electronics. 2019, 99: 1.
[8]
李飞龙,周腊吾,李玲,等. 基于蚁群算法的Spar型浮式风机独立变桨控制方法[J]. 可再生能源2020, 38(6): 771-777.
LI Feilong, ZHOU Lawu, LI Ling, et al. Individual blade pitch control method of Spar floating wind turbine based on ant colony algorith[J]. Renewable Energy Resources, 2020, 38(6): 771-777.
[9]
司荣国,贾成真,王灵梅,等. 基于5 MW风机模型的变初值模糊PI变桨控制技术研究[J]. 可再生能源2020, 38(6): 778-783.
SI Rongguo, JIA Chengzhen, WANG Lingmei, et al. Research on variable initial value fuzzy PI pitch control technology based on 5 MW wind turbine model[J]. Renewable Energy Resources, 2020, 38(6): 778-783.
[10]
宋文静,谢源,黄文君,等. 改进灰狼优化算法在变桨距自抗扰控制中的应用[J]. 可再生能源2020, 38 (7): 905-910.
SONG Wenjing, XIE Yuan, HUANG Wenjun, et al. Application of improved grey wolf optimization algorithm in variable pitch auto disturbance rejection control[J]. Renewable Energy Resources, 2020, 38(7): 905-910.
[11]
DHAR M K, THASFIQUZZAMAN M, DHAR R K, et al. Study on pitch angle control of a variable speed wind turbine using different control strategies[C]//IEEE International Conference on Power, Control, Signals and Instrumentation Engineering. 2017: 285-290.
[12]
FDAILI M, ESSADKI A, NADOUR M, et al. Comparative study of MPPT and pitch angle control strategies for a wind energy conversion system[C]//2017 International Renewable and Sustainable Energy Conference (IRSEC). 2017.
[13]
GAO Richie, GAO Zhiwei. Pitch control for wind turbine systems using optimization, estimation and compensation[J]. Renewable Energy, 2016, 91(3): 501-515.
[14]
王沛元. 基于遗传算法优化PID参数的风电机组独立变桨控制[D]. 长沙:湖南大学,2018.
WANG Peiyuan. Optimization of PID parameters based on genetic algorithm for variable pitch control of wind turbines[D]. Changsha: Hunan University, 2018.
[15]
闫学勤,王维庆,王海云. 降低风力机叶轮载荷独立变桨距控制策略[J]. 可再生能源2019, 37(8): 1241-1246.
YAN Xueqin, WANG Weiqing, WANG Haiyun, et al. Individual pitch control for decreasing wind turbines of rotor load[J]. Renewable Energy Resources, 2019, 37(8): 1241-1246.
[16]
刘军,张彬彬,刘飞,等. 一种减少变桨动作的风机有功功率控制算法[J]. 电机与控制学报2020, 24(12): 70-76.
LIU Jun, ZHANG Binbin, LIU Fei, et al. Wind turbine active power control algorithm for pitch regulation reduction[J]. Electric Machines and Control, 2020, 24(12): 70-76.
[17]
叶杭冶. 风力发电机组的控制技术[M]. 机械工业出版社,2015.
[18]
张晓杰. 风电场有功功率控制方法研究[D]. 北京:北京交通大学,2016.
ZHANG Xiaojie. An novel active power control method of wind farm[D]. Beijing: Beijing Jiaotong University, 2016.
[19]
全国电力监管标准化技术委员会. 风电场接入电力系统技术规定:GB/T 19963—2011[S]. 北京:中国标准出版社,2011.
[20]
王江. 风力发电变桨距控制技术研究[D]. 合肥:合肥工业大学,2009.
WANG Jiang. Research on the pitch-controlled for wind turbine[D]. Hefei: Hefei University of Technology, 2009.
[21]
XUE J, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering An Open Access Journal. 2020, 8(1): 22-34.
[22]
柴海棣,赵晓艳,史波. 基于能量传递模型的永磁直驱变桨变速风电机组功率特性测试方法[J]. 发电技术2019, 40(4): 396-402.
CHAI Haidi, ZHAO Xiaoyan, SHI Bo. Power performance characteristics measurement method of PMSG-based wind turbines with energy transmitted model[J]. Power Generation Technology, 2019, 40(4): 396-402.

Funding

Project supported by National Key Research and Development Program of China(2019YFE0104800)
PDF(1296 KB)

Accesses

Citation

Detail

Sections
Recommended

/