Research Strategy of Lithium Metal Anode

HE Tianxian , GU Fenglong

Distributed Energy ›› 2021, Vol. 6 ›› Issue (3) : 10-18.

PDF(2000 KB)
PDF(2000 KB)
Distributed Energy ›› 2021, Vol. 6 ›› Issue (3) : 10-18. DOI: 10.16513/j.2096-2185.DE.2106506
Review

Research Strategy of Lithium Metal Anode

Author information +
History +

Abstract

All-solid-state batteries are composed of cathode materials, solid electrolytes and lithium metal anodes. Lithium metal anodes are an important part of all-solid-state batteries. The successful application of lithium metal anode can not only improve the energy density and safety performance of the battery, but also reduce the manufacturing cost of the existing electrochemical system and completely replace the liquid lithium ion battery. However, in the actual application process, the lithium metal negative electrode still has the following difficult to solve problems: lithium dendrites, powdering, volume expansion and air stability. In response to the above problems, this article reviews some advanced lithium metal anode research strategies, gives its own solutions, and finally puts forward a prospect.

Key words

lithium metal anode / all-solid-state batteries / lithium dendrites

Cite this article

Download Citations
Tianxian HE , Fenglong GU. Research Strategy of Lithium Metal Anode[J]. Distributed Energy Resources. 2021, 6(3): 10-18 https://doi.org/10.16513/j.2096-2185.DE.2106506

References

[1]
HARRIS W S. Electrochemical studies in cyclic esters[D]. California: University of California, 1958.
[2]
ZHANG H, LI C M, Eshetu G G, et al. From solid-solution electrodes and the rocking-chair concept to today's batteries[J]. Angewandte Chemie International Edition, 2020, 59(2): 534-538.
[3]
REDDY M V, MAUGER A, JULIEN C M, et al. Brief history of early lithium-battery development[J]. Materials, 2020, 13(8): 1884.
[4]
WHITTINGHAM M S. Electrical energy storage and intercalation chemistry[J]. Science, 1976, 192: 1126-1127.
[5]
GOODENOUGH J B. How we made the Li-ion rechargeable battery[J]. Nature Electronics, 2018, 1(3): 204-204.
[6]
AGARWAL R R, SELMAN J R. Electrochemical intercalation of lithium in graphite using a molten-salt cell[J]. Ecs Proceedings Volumes, 1986, 1: 377-388.
[7]
YOSHINO A. The birth of the lithium-ion battery[J]. Angewandte Chemie International Edition, 2012, 51(24): 5798-5800.
[8]
ARMAND M B. Polymer solid electrolytes—An overview[J]. Solid State Ionics, 1983, 9-10(2): 745-754.
[9]
MAUGER A, JULIEN C M, GOODENOUGH J B, et al. Tribute to michel armand: From rocking chair—Li-ion to solid-state lithium batteries[J]. Journal of the Electrochemical Society, 2019, 167: 070507.
[10]
LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206.
[11]
SHEN X W, LI Y T, QIAN T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery[J]. Nature Communications, 2019, 10(1): 900.
[12]
LIU F F, WANG L F, ZHANG Z W, et al. A mixed lithium-ion conductive Li2S/Li2Se protection layer for stable lithium metal anode[J]. Advanced Functional Materials, 2020, 30(23): 2001607.
[13]
ZHANG L Q, YANG T T, DU C C, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up[J]. Nature Nanotechnology, 2020, 15(2): 1-5.
[14]
LUO Y, LI T Y, ZHANG H Z, et al. Endogenous symbiotic Li3N/cellulose skin to extend the cycle life of lithium anode[J]. Angewandte Chemie International Edition, 2021.
[15]
ZHANG H Y, JU S L, XIA G L, et al. Dendrite-free Li-metal anode enabled by dendritic structure[J]. Advanced Functional Materials, 2021: 2009712.
[16]
LIU J, BAO Z N, CUI Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180-186.
[17]
SUN F, ZHOU D, HE X, et al. The morphological reversibility of modified-Li based anode for next generation batteries[J]. ACS Energy Letters, 2020, 5(1): 152-161.
[18]
SONG J, YE Y D, NIU Y J, et al. Solid-solution-based metal alloy phase for highly reversible lithium metal anode[J]. Journal of the American Chemical Society, 2020, 142(19): 8818-8826.
[19]
JIN C B, LIU T F, SHENG O W, et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox[J]. Nature Energy, 2021: 1-10.
[20]
YU Z A, CUI Y, BAO Z N. Design principles of artificial solid electrolyte interphases for lithium-metal anodes[J]. Cell Reports Physical Science, 2020, 1(7): 100119.
[21]
CHEN J Y, ZHAO J, LEI L N, et al. Dynamic intelligent Cu current collectors for ultrastable lithium metal anodes[J]. Nano Letters, 2020, 20(5): 3403-3410.
[22]
CAO Z J, LI B, YANG S B. Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium-copper-lithium arrays[J]. Advanced Materials, 2019, 31(29): 1901310.
[23]
ZHAI P B, WANG T S, JIANG H N, et al. 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures[J]. Advanced Materials, 2021, 33(13): 2006247.
[24]
XU J H, DING C D, CHEN P, et al. Intrinsic self-healing polymers for advanced lithium-based batteries: Advances and strategies[J]. Applied Physics Reviews, 2020, 7(3): 031304.
[25]
LIU Q, ZHOU D, SHANMUKARAJ D, et al. Self-healing janus interfaces for high-performance LAGP-based lithium metal batteries[J]. ACS Energy Letters, 2020, 5(5): 1456-1464.
[26]
ZHANG X, YANG Y A, ZHOU Z. Towards practical lithium-metal anodes[J]. Chemical Society Reviews, 2020, 49(10): 3040-3071.
[27]
ZHANG Y B, LV W, HUANG Z J, et al. An air-stable and waterproof lithium metal anode enabled by wax composite packaging[J]. Science Bulletin, 2019, 64(13): 910-917.
[28]
ZHAO Y M, WANG D W, GAO Y, et al. Stable Li metal anode by a polyvinyl alcohol protection layer via modifying solid-electrolyte interphase layer[J]. Nano Energy, 2019, 64: 103893.
[29]
LI X, YUAN L X, LIU D Z, et al. Elevated lithium ion regulation by a “natural silk” modified separator for high-performance lithium metal anode[J]. Advanced Functional Materials, 2021: 2100537.
[30]
WEI C L, TAN L W, Tao Y, et al. Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte[J]. Energy Storage Materials, 2021, 34: 12-21.

Funding

National Natural Science Foundation of China(21673085)
PDF(2000 KB)

Accesses

Citation

Detail

Sections
Recommended

/