Research on Development Status and Trend of Green Hydrogen Energy Technologies Under Targets of Carbon Peak and Carbon Neutrality

MIAO Ankang, YUAN Yue, WU Han, YUAN Boxin

Distributed Energy ›› 2021, Vol. 6 ›› Issue (4) : 15-24.

PDF(1797 KB)
PDF(1797 KB)
Distributed Energy ›› 2021, Vol. 6 ›› Issue (4) : 15-24. DOI: 10.16513/j.2096-2185.DE.2106511
Integrated Control Technology for Hydrogen and Renewable Energy Systems

Research on Development Status and Trend of Green Hydrogen Energy Technologies Under Targets of Carbon Peak and Carbon Neutrality

Author information +
History +

Abstract

Hydrogen energy is a clean, zero-carbon, flexible and efficient secondary energy with abundant sources. As an important part of modern energy system, it's an important carrier to achieve the goal of carbon peaking and carbon neutralization. With the increasingly severe situation of carbon emission reduction, green hydrogen has received high attention worldwide. Hydrogen production from renewable energy can realize the whole hydrogen energy industry chain green and carbon-free, and solve the problem of renewable energy consumption, which is a very potential development route of hydrogen energy. This paper summarizes and analyzes the latest development trends of hydrogen energy industry at home and abroad, and focuses on the development status and trend of key technologies of green hydrogen energy from each link of the whole industrial chain, including hydrogen production, hydrogen storage, hydrogen transportation, hydrogen filling and application. Then based on the development situation of hydrogen energy industry in China, several typical application scenarios and development suggestions are put forward, which provides reference for the development of green hydrogen energy.

Key words

the targets of carbon peak and carbon neutrality / green hydrogen / renewable energy / key technologies / trend of development

Cite this article

Download Citations
Ankang MIAO , Yue YUAN , Han WU , et al. Research on Development Status and Trend of Green Hydrogen Energy Technologies Under Targets of Carbon Peak and Carbon Neutrality[J]. Distributed Energy Resources. 2021, 6(4): 15-24 https://doi.org/10.16513/j.2096-2185.DE.2106511

References

[1]
曹蕃,陈坤洋,郭婷婷,等. 氢能产业发展技术路径研究[J]. 分布式能源2020, 5(1): 1-8.
CAO Fan, CHEN Kunyang, GUO Tingting, et al. Research on technological path of hydrogen energy industry development[J]. Distributed Energy, 2020, 5(1): 1-8.
[2]
李建林,李光辉,马速良,等. 碳中和目标下制氢关键技术进展及发展前景综述[J]. 热力发电2021, 50(6): 1-8.
LI Jianlin, LI Guanghui, MA Suliang, et al. Overview of the progress and development prospects of key technologies for hydrogen production under the goal of carbon neutrality[J]. Thermal Power Generation, 50(6): 1-8.
[3]
李争,张蕊,孙鹤旭,等. 可再生能源多能互补制-储-运氢关键技术综述[J]. 电工技术学报2021, 36(3): 446-462.
LI Zheng, ZHANG Rui, SUN Hexu, et al. Review on key technologies of hydrogen generation, storage and transportation based on multi-energy complementary renewable energy[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 446-462.
[4]
刘坚,钟财富. 我国氢能发展现状与前景展望[J]. 中国能源2019, 41(2): 32-36.
LIU Jian, ZHONG Caifu. The present situation and prospect of hydrogen energy development in China[J]. Energy of China, 2019, 2(1): 32-36.
[5]
任大伟,侯金鸣,肖晋宇,等. 能源电力清洁化转型中的储能关键技术探讨[J]. 高电压技术https://doi.org/10.13336/j.1003-6520.hve.20201056.
REN Dawei, HOU Jinming, XIAO Jinyu, et al. The exploration of key technologies for energy storage in the clean energy and power transition[J]. High Voltage Engineering, https://doi.org/10.13336/j.1003-6520.hve.20201056.
[6]
KOVAČ A, PARANOS M, MARCIUŠ D. Hydrogen in energy transition: A review[J]. International Journal of Hydrogen Energy, 2021, 46(16): 10016-10035.
[7]
蔡国伟,陈冲,孔令国,等. 风电/制氢/燃料电池/超级电容器混合系统控制策略[J]. 电工技术学报2017, 32(17): 84-94.
CAI Guowei, CHEN Chong, KONG Lingguo, et al. Control strategies for hybrid systems of wind power/hydrogen production/fuel cells/supercapacitors[J]. Journal of Electrical Engineering & Technology, 2017, 32(17): 84-94.
[8]
黄格省,阎捷,师晓玉,等. 新能源制氢技术发展现状及前景分析[J]. 石化技术与应用2019, 37(5): 289-296.
HUANG Gexing, YAN Jie, SHI Xiaoyu, et al. Development status and prospect analysis of new energy hydrogen production technology[J]. Petrochemical Technology & Application, 2019, 37(5): 289-296.
[9]
WANG M, WANG G, SUN Z, et al. Review of renewable energy-based hydrogen production processes for sustainable energy innovation[J]. Global Energy Interconnection, 2019, 2(5): 437-444.
[10]
陈嘉鹏,汤乃云,汤华. 考虑可再生能源利用率的风-光-气-储微能源网经济调度研究[J]. 可再生能源2020, 38(1): 70-75.
CHEN Jiapeng, TANG Naiyun, TANG Hua. Research on economic dispatching of wind-photo-gas-storage micro energy network considering renewable energy utilization[J]. Renewable Energy, 2020, 38 (1): 70-75.
[11]
高工氢电,高工产业研究院. 2021年中国氢电产业蓝皮书[R]. 2021.
[12]
孔令国,蔡国伟,李龙飞,等. 风光氢综合能源系统在线能量调控策略与实验平台搭建[J]. 电工技术学报2018, 33(14): 3371-3384.
KONG Lingguo, CAI Guowei, LI Longfei. On-line energy regulation strategy and experimental platform for wind-solar hydrogen integrated energy system[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3371-3384.
[13]
张丽,陈硕翼. 风电制氢技术国内外发展现状及对策建议[J]. 科技中国2020(1): 13-16.
ZHANGLi, CHEN Shuoyi. Development status and counter-measures of wind power hydrogen production technology at home and abroad[J]. Science and Technology China, 2020(1): 13-16.
[14]
DAWOOD F, ANDA M, SHAFIULLAH G M. Hydrogen production for energy: An overview[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3847-3869.
[15]
KOLEVA M, GUERRA O J, EICHMAN J, et al. Optimal design of solar-driven electrolytic hydrogen production systems within electricity markets[J]. Journal of Power Sources, 2021(483): 229183.
[16]
骈松,孙邦兴,杨华. 基于可再生能源纯水电解制氢技术展望[J]. 山东化工2020, 49(15): 64-65.
PIAN Song, SUN Bangxing, YANG Hua. Prospect of hydrogen production by electrolysis of pure water based on renewable energy[J]. Shandong Chemical Industry, 2020, 49(15): 64-65.
[17]
孙鹤旭,李争,陈爱兵,等. 风电制氢技术现状及发展趋势[J]. 电工技术学报2019, 34(19): 4071-4083.
SUN Hexu, LI Zheng, CHEN Aibing, et al. Current status and development trend of wind power hydrogen production technology[J]. Transactions of China Electrotechnical Society, 2019, 34 (19): 4071-4083.
[18]
BUTTLER A, SPLIETHOFF H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454.
[19]
REZAEI M, SALIMI M, MOMENI M, et al. Investigation of the socio-economic feasibility of installing wind turbines to produce hydrogen: Case study[J]. International Journal of Hydrogen Energy, 2018, 43(52): 23135-23147.
[20]
罗承先. 世界可再生能源电力制氢现状[J]. 中外能源2017, 22(8): 25-32.
LUO Chengxian. Present status of power-to-hydrogen technology worldwide using renewable energy[J]. Sino-Global Energy, 2017, 22(8): 25-32.
[21]
王敏. 国内外新能源制氢发展现状及未来趋势[J]. 化学工业2018, 36(6): 13-18.
WANG Min. The status quo and trend of producing hydrogen from new energy[J]. Chemical Industry, 2018, 36(6): 13-18.
[22]
俞红梅,邵志刚,侯明,等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学.
YU Hongmei, SHAO Zhigang, HOU Ming, et al. Hydrogen production by water electrolysis: Progress and suggestions[J]. Strategic Study of CAE.
[23]
HAUCH A, KÜNGAS R, BLENNOW P, et al. Recent advances in solid oxide cell technology for electrolysis[J]. Science, 2020, 370(6513): 6118.
[24]
MOSS B, BABACAN O, KAFIZAS A, et al. A review of inorganic photoelectrode developments and reactor scale-up challenges for solar hydrogen production[J]. Advanced Energy Materials, 2021, 11(13): 2003286.
[25]
李仁贵,李灿. 太阳能光催化分解水研究进展[J]. 科技导报2020, 38(23): 49-61.
LI Rengui, LI Can. Research status and development of photocatalytic water splitting for solar energy conversion[J]. Science & Technology Review, 2020, 38(23): 49-61.
[26]
张剑光. 氢能产业发展展望—制氢与氢能储运[J]. 化工设计2019, 29(4): 3-6, 26.
ZHANG Jianguag. Prospects for the development of hydrogen energy industry-hydrogen production and hydrogen energy storage and transportation[J]. Chemical Engineering Design, 2019, 29(4): 3-6, 26.
[27]
MISHRA P, KRISHNAN S, RANA S, et al. Outlook of fermentative hydrogen production techniques: An overview of dark, photo and integrated dark-photo fermentative approach to biomass[J]. Energy Strategy Reviews, 2019, 24: 27-37.
[28]
中国氢能联盟. 中国氢能及燃料电池产业手册[R]. 2020.
[29]
潘相敏,周伟,高顶云,等. 燃料电池汽车加氢站的工程实践[C]//2013年年会暨工业气体供应技术论坛,2014: 92-105.
PAN Xiangmin, ZHOU Wei, GAO Dingyun, et al. Engineering practice of fuel cell vehicle hydrogenation station[C]//2013 Annual Meeting and Industrial Gas Supply Technology Forum, 2014: 92-105.
[30]
GHAIB K, BEN-FARES F Z. Power-to-Methane: A state-of-the-art review[J]. Renewable & Sustainable Energy Reviews, 2018, 81: 433-446.
[31]
MCKENNA R C, BCHINI Q, WEINAND J M, et al. The future role of Power-to-Gas in the energy transition: Regional and local techno-economic analyses in Baden-Württemberg[J]. Applied Energy, 2018, 212: 386-400.
[32]
曹湘洪. 氢能开发与利用中的关键问题[J]. 石油炼制与化工2017, 48(9): 1-6.
CAO Xianghong. Key to development and application of hydrogen energy[J]. Petroleum Processing and Petrochemicals, 2017, 48(9): 1-6.
[33]
杜泽学,慕旭宏. 分布式制氢技术的发展及应用前景展望[J]. 石油炼制与化工2021, 52(1): 1-9.
DU Zexue, MU Xuhong. Review and application prospect on distributed hydrogen production technology[J]. Petroleum Processing and Petrochemicals, 2021, 52(1): 1-9.
[34]
张景新,孟嘉乐,吕坤键,等. 我国氢应用发展现状及趋势展望[J]. 新材料产业2021(1): 36-39.
ZHANG Jingxin, MENG Jiale, LV Kunjian, et al. Current situation and trend of hydrogen application in China[J]. Advanced Materials Industry, 2021(1): 36-39.
[35]
彭博新能源财经. 可再生能源制氢经济性[R]. 2019.
[36]
中国氢能联盟. 中国氢能源及燃料电池产业白皮书2020[R]. 2020.
[37]
COUNCIL H. Path to hydrogen competitiveness—A cost perspective[R]. 2020.
[38]
ABDALLA A M, HOSSAIN S, NISFINDY O B, et al. Hydrogen production, storage, transportation and key challenges with applications: A review[J]. Energy Conversion and Management, 2018, 165: 602-627.
[39]
APOSTOLOU D, ENEVOLDSEN P. The past, present and potential of hydrogen as a multifunctional storage application for wind power[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 917-929.
[40]
蒋东方,贾跃龙,鲁强,等. 氢能在综合能源系统中的应用前景[J]. 中国电力2020, 53(5): 135-142.
JIANG Dongfang, JIA Yuelong, LU Qiang, et al. Application prospect of hydrogen energy in integrated energy systems[J]. Electric Power, 2020, 53(5): 135-142.
[41]
杨源,陈亮,王小虎,等. 海上风电-氢能综合能源监控系统设计[J]. 南方能源建设2020, 7(2): 35-40.
YANG Yuan, CHEN Liang, WANG Xiaohu, et al. Design of integrated offshore wind power-hydrogen energy monitoring system[J]. Southern Energy Construction, 2020, 7(2): 35-40.
[42]
郭梦婕,严正,周云,等. 含风电制氢装置的综合能源系统优化运行[J]. 中国电力2020, 53(1): 115-123, 161.
GUO Mengjie, YAN Zheng, ZHOU Yun, et al. Optimized operation design of integrated energy system with wind power hydrogen production[J]. Electric Power, 2020, 53(1): 115-123, 161.
[43]
熊宇峰,司杨,郑天文,等. 基于主从博弈的工业园区综合能源系统氢储能优化配置[J]. 电工技术学报2021, 36(3): 507-516.
XIONG Yufeng, SI Yang, ZHENG Tianwen, et al. Optimal configuration of hydrogen storage in industrial park integrated energy system based on stackelberg game[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 507-516.
[44]
贾洋洋,仲海涛,张智晟. 含储氢装置的分布式能源系统的优化经济调度[J]. 广东电力2019, 32(11): 38-44.
JIA Yangyang, ZHONG Haitao, ZHANG Zhisheng. Optimized Economic Dispatch of Distributed Energy System with Hydrogen Storage Device[J]. Guangdong Electric Power, 2019, 32(11): 38-44.
PDF(1797 KB)

Accesses

Citation

Detail

Sections
Recommended

/