Cause Analysis and Optimization Measures for Wind Turbine Substandard Power Curve

ZHANG Zhenzhen

Distributed Energy ›› 2021, Vol. 6 ›› Issue (5) : 71-76.

PDF(3201 KB)
PDF(3201 KB)
Distributed Energy ›› 2021, Vol. 6 ›› Issue (5) : 71-76. DOI: 10.16513/j.2096-2185.DE.2106518
Application Technology

Cause Analysis and Optimization Measures for Wind Turbine Substandard Power Curve

Author information +
History +

Abstract

Power curve is an important technical index to measure and assess the performance of wind turbines. Affected by various factors such as design and operation, power curve has been difficult to meet the standard assessment requirements of the industry and market. The power curve is not up to standard from three aspects of mechanical measurement error, backward control strategy and aerodynamic performance change. And through the calibration of blade mechanical zero angle, the use of minimum rotor angle, double PI torque control and modification of simulation models, taking the problem wind turbine as an example, the simulation results show that the above measures can improve the power curve of the unit and greatly improve the generating performance of the unit.

Key words

power curve / wind turbines / simulation verification / optimization measures

Cite this article

Download Citations
Zhenzhen ZHANG. Cause Analysis and Optimization Measures for Wind Turbine Substandard Power Curve[J]. Distributed Energy Resources. 2021, 6(5): 71-76 https://doi.org/10.16513/j.2096-2185.DE.2106518

References

[1]
吴子晗. 风电机组发电能力分析与优化[D]. 北京:华北电力大学,2016.
WU Zihan. Wind turbine power generation capacity analysis and optimization[D]. Beijing: North China Electric Power University, 2016.
[2]
孙洁. 风电场机组功率曲线优化的研究[J]. 风能产业2019: 66-74.
SUN Jie. Research on power curve optimization of wind farm[J]. Wind Energy Industry, 2019: 66-74.
[3]
陈志强. 低空气密度地区风电机组功率曲线异常问题分析[J]. 机电信息2019(17): 89-91.
CHEN Zhiqiang. Analysis of abnormal power curve of wind turbine in low air density area[J]. Mechanical and Electrical Information, 2019(17): 89-91.
[4]
顾婷. 风电场后评估功率曲线的讨论[C]//第六届中国风电后市场交流合作大会论文集. 中国农业机械工业协会风力机械分会.天津,2019: 7.
GU Ting. Discussion of power curves for wind farm post-assessment[C]//Proceedings of the Sixth China Wind Power Aftermarket Exchange and Cooperation Conference. Wind Power Machinery Branch of China Agricultural Machinery Industry Association. Tianjin, 2019: 7.
[5]
张泽龙. 大型风电机组功率曲线测试与评估方法研究[D]. 北京:华北电力大学,2019.
ZHANG Zelong. Research on power curve test and evaluation method for large wind turbine[D]. Beijing: North China Electric Power University, 2019.
[6]
李南. 大型风电机组功率优化控制研究[D]. 沈阳:沈阳工业大学,2017.
LI Nan. Research on power optimization and control strategy for large wind turbine[D]. Shenyang: Shenyang University of Technology, 2017.
[7]
朱涛,边辉,梁萌. 风电机组偏航和叶片零位桨矩角误差校准分析[C]//第七届中国风电后市场交流合作大会论文集. 中国农业机械工业协会风力机械分会. 2020: 8.
ZHU Tao, BIAN Hui, LIANG Meng. Calibration analysis of yaw and blade zero position blade moment angle error of wind turbine[C]//Proceedings of the Seventh China Wind Power Aftermarket Exchange and Cooperation Conference. Wind Power Machinery Branch of China Agricultural Machinery Industry Association. 2020: 8.
[8]
常峰. 风力发电机组实际运行功率曲线的优化方案应用的研究[D]. 北京:华北电力大学,2016.
CHANG feng, Research on the application of optimization of wind turbine actual operation power curve[D]. Beijing: North China Electric Power University, 2016.
[9]
马晓慧. 风速模型对风电机组功率曲线的影响研究[D]. 北京:华北电力大学,2016.
MA Xiaohui. Research on wind speed model and its influence on power curve[D]. Beijing: North China Electric Power University, 2016.
[10]
申新贺,潘东浩,唐继光. 大型风电机组功率曲线的分析与修正[J]. 应用能源技术2009(8): 28-32.
SHEN Xinhe, PAN Donghao, TANG Jiguang. Analysis and modification method for wind turbine power curve[J]. Applied Energy Technology, 2009(8): 28-32.
[11]
刘昊,柳亦兵,辛卫东,等. 基于运行数据的风力发电机组功率特性分析[J]. 电网与清洁能源2009, 25(7): 53-56.
LIU Hao, LIU Yibing, XIN Weidong, et al. Wind turbine power performance based on the operation data[J]. Power System and Clean Energy, 2009, 25(7): 53-56.
[12]
MANOBEL B, SEHNKE F, LAZZS J A, et al. Wind turbine power curve modeling based on Gaussian processes and artificial neural networks[J]. Renewable Energy, 2018, 125: 1015-1020.
[13]
ROMANUKE V V. Wind turbine power curve exponential model with differentiable cut-in and cut-out parts[J]. Науковi вiстi Нацiонального технiчного унiверситету Украïни “Киïвський полiтехнiчний iнститут”2018(2): 33-43.
[14]
XU Keyi, YAN Jie, ZHANG Hao, et al. Quantile based probabilistic wind turbine power curve model[J]. Applied Energy, 2021, 296(2): 116913.
[15]
ASTOLFI D. Perspectives on SCADA data analysis methods for multivariate wind turbine power curve modeling[J]. Machines, 2021, 9(5): 100.
[16]
SRBINOVSKI B, TEMKO A, LEAHY P, et al. Gaussian mixture models for site-specific wind turbine power curves[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2021, 235(3): 95765092093172.
[17]
邢作霞,张新宇,刘洋,等. 风电机组运行功率特性原理验证型实验开发[J]. 实验技术与管理2021, 38(4): 192-196, 217.
XING Zuoxia, ZHANG Xinyu, LIU Yang, et al. Development on verification experiment of wind turbine operation power characteristic principle[J]. Experimental Technology and Management, 2021, 38(4): 192-196, 217.
PDF(3201 KB)

Accesses

Citation

Detail

Sections
Recommended

/