Technical Solutions for Decarburization in Context of Carbon Neutrality

TIAN Jiangnan , AN Yuan , JIANG Jing , LUO Yang , TIAN Jingkui , CHANG Desheng

Distributed Energy ›› 2021, Vol. 6 ›› Issue (3) : 63-69.

PDF(3244 KB)
PDF(3244 KB)
Distributed Energy ›› 2021, Vol. 6 ›› Issue (3) : 63-69. DOI: 10.16513/j.2096-2185.DE.2106523
Application Technology

Technical Solutions for Decarburization in Context of Carbon Neutrality

Author information +
History +

Abstract

With the proposed goal of "carbon neutrality" , China's energy utilization mode needs to be adjusted. Firstly, it is introduced that the proportion of non-fossil energy in China is about 15% at present, and it will reach about 70% by 2050. Secondly, in addition to increasing the utilization proportion of non-fossil energy, carbon capture and utilization technology must be used to achieve carbon emission reduction in some difficult decarburization fields. Then, carbon capture and utilization technologies are introduced in detail. Carbon capture technologies include carbon dioxide capture before combustion, carbon dioxide capture during combustion and carbon dioxide capture after combustion. Carbon dioxide utilization technology mainly includes physical application, chemical utilization and biomass utilization. Due to the complete decarburization of hydrogen production by water electrolysis with new energy, hydrogen production by water electrolysis with new energy is considered to be the ultimate route of decarburization. Before the complete decarburization is realized, carbon capture technology is needed to cover the bottom.

Key words

carbon neutrality / decarburization / carbon capture and utilization technology / hydrogen

Cite this article

Download Citations
Jiangnan TIAN , Yuan AN , Jing JIANG , et al . Technical Solutions for Decarburization in Context of Carbon Neutrality[J]. Distributed Energy Resources. 2021, 6(3): 63-69 https://doi.org/10.16513/j.2096-2185.DE.2106523

References

[1]
薛立林,肖岚. 对制定中国能源低碳“十四五”及中长期发展规划的认识和建议[J]. 国际石油经济2020, 28(12): 1-10.
XUE Lilin, XIAO Lan. Understanding and suggestions on formulating low carbon energy strategy in China's 14th Five Year period and medium-to-long term development plan[J]. International Petroleum Economics, 2020, 28 (12): 1-10.
[2]
田江南,罗扬. 风电耦合电解水制氢技术研究[J]. 电力勘测设计2021(2): 63-67.
TIAN Jiangnan, LUO Yang. Research of wind power coupled with producing hydrogen by water electrolysis[J]. Electric Power Survey & Design, 2021(2): 63-67.
[3]
杨向平,陆诗建. 回收烟气中二氧化碳用于强化采油技术进展及可行性分析[J]. 现代化工2009, 29(11): 24-27.
YANG Xiangping, LU Shijian. Advance in recovery of carbon dioxide from flue gas used in EOR technique and its feasibility[J]. Modern Chemical Industry, 2009, 29(11): 24-27.
[4]
吴瑾,王智伟,邢琳,等. 基于随机规划的风光互补系统容量配比方法[J]. 分布式能源2021, 6(2): 40-46.
WU Jin, WANG Zhiwei, XING Lin, et al. Capacity allocation method of wind-solar hybrid system based on stochastic programming theory[J]. Distributed Energy, 2021, 6(2): 40-46.
[5]
刘泰秀,刘启斌,隋军,等. 基于太阳能热化学的分布式供能系统热力学性能及碳排放分析[J]. 发电技术2020, 41(3): 212-219.
LIU Taixiu, LIU Qibin, SUI Jun, et al. Thermodynamic performance and carbon emission analysis of distributed energy supply system based on solar thermochemistry[J]. Power Generation Technology, 2020, 41(3): 212-219.
[6]
张运洲,张宁,代红才,等. 中国电力系统低碳发展分析模型构建与转型路径比较[J]. 中国电力2021, 54(3): 1-11.
ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al. Model construction and pathways of low-carbon transition of China's power system[J]. Electric Power, 2021, 54(3): 1-11.
[7]
张贤,郭偲悦,孔慧,等. 碳中和愿景的科技需求与技术路径[J]. 中国环境管理2021, 13(1): 65-70.
ZHANG Xian, GUO Siyue, KONG Hui, et al. Technology demands and approach of carbon neutrality vision[J]. Chinese Journal of Environmental Management, 2021, 13(1): 65-70.
[8]
田江南,蒋晶,罗扬,等. 绿色氢能技术发展现状与趋势[J]. 分布式能源2021, 6(2): 8-13.
TIAN Jiangnan, JIANG Jing, LUO Yang, et al. Development status and trend of green hydrogen energy technology[J]. Distributed Energy, 2021, 6(2): 8-13.
[9]
张九天,张璐. 面向碳中和目标的碳捕集、利用与封存发展初步探讨[J]. 热力发电2021, 50(1): 1-6.
ZHANG Jiutian, ZHANG Lu. Preliminary discussion on development of carbon capture, utilization and storage for carbon neutralization[J]. Thermal Power Generation, 2021, 50(1): 1-6.
[10]
王伟杰,彭勃,李顺,等. 氢能与碳捕集、利用与封存产业协同发展研究[J]. 热力发电2021, 50(1): 18-23.
WANG Weijie, PENG Bo, LI Shun, et al. Research on synergetic development of hydrogen energy and carbon capture, utilization and storage industry[J]. Thermal Power Generation, 2021, 50(1): 18-23.
[11]
向轶,陈艳艳,吕文豪,等. 碳捕集技术应用进展及碳交易市场分析[J]. 石化技术与应用2020, 38(5): 353-357.
XIANG Yi, CHEN Yanyan, LV Wenhao, et al. Application progress of carbon capture technologies and analysis of carbon emission permits trade market[J]. Petrochemical Technology & Application, 2020, 38(5): 353-357.
[12]
刘晓民. 实现双碳目标,CCUS兜底[J]. 中国石油石化2021(9): 36-37.
[13]
张一峰. 碳中和,能源绿色转型的新路径[J]. 中国石油和化工2020 (12): 29-31.
[14]
高虎. “双碳”目标下中国能源转型路径思考[J]. 国际石油经济2021, 29(3): 1-6.
GAO Hu. China's energy transformation under the targets of peaking carbon emissions and carbon neutral[J]. International Petroleum Economics, 2021, 29(3): 1-6.
[15]
王利宁,彭天铎,向征艰,等. 碳中和目标下中国能源转型路径分析[J]. 国际石油经济2021, 29(1): 2-8.
WANG Lining, PENG Tianduo, XIANG Zhengjian, et al. Analysis of China's energy transition pathways under the goal of carbon neutrality[J]. International Petroleum Economics, 2021, 29(1): 2-8.
[16]
珊克瑞·斯里尼瓦桑,周希舟,张东杰. 欧洲氢能发展现状前景及对中国的启示[J]. 国际石油经济2019, 27(4): 18-23.
SRINIVASAN Shankari, ZHOU Xizhou, ZHANG Dongjie. Hydrogen development in Europe and its implications for China's hydrogen industry[J]. International Petroleum Economics, 2019, 27 (4): 18-23.
[17]
程耀华,杜尔顺,田旭,等. 电力系统中的碳捕集电厂:研究综述及发展新动向[J]. 全球能源互联网2020, 3(4): 339-350.
CHENG Yaohua, DU Ershun, TIAN Xu, et al. Carbon capture power plants in power systems: Review and latest research trends[J]. Journal of Global Energy Interconnection, 2020, 3(4): 339-350.
[18]
韩学义. 电力行业二氧化碳捕集、利用与封存现状与展望[J]. 中国资源综合利用2020, 38(2): 110-117.
HAN Xueyi. Current situation and prospect of carbon dioxide capture, utilization and storage in electric power industry[J]. China Resources Comprehensive Utilization, 2020, 38(2): 110-117.
[19]
李家全,刘兰翠,李小裕,等. 中国煤炭制氢成本及碳足迹研究[J]. 中国能源2021, 43(1): 51-54.
[20]
张贤. 碳中和目标下中国碳捕集利用与封存技术应用前景[J]. 可持续发展经济导刊2020 (12): 22-24.
[21]
余碧莹,赵光普,安润颖,等. 碳中和目标下中国碳排放路径研究[J]. 北京理工大学学报(社会科学版), 2021, 23(2): 17-24.
YU Biying, ZHAO Guangpu, AN Runying, et al. Research on China's CO2 emission pathway under carbon neutral target[J]. Journal of Beijing University of Technology (Social Science Edition), 2021, 23(2): 17-24.
[22]
张平,蔡洁,代木林. 我国风电产业特征及其发展路线探讨[J]. 资源开发与市场2015, 31(3): 348-52.
ZHANG Ping, CAI Jie, DAI Mulin. Characteristics of wind power industry and its development route in China[J]. Resources Development and Market, 2015, 31(3): 348-52.
[23]
曹炜,钟厦,王海华,等. 制氢系统参与火电辅助调峰的容量配置优化[J]. 分布式能源2020, 5(2): 15-20.
CAO Wei, ZHONG Sha, WANG Haihua, et al. Optimal capacity allocation of hydrogen production system participating peak regulation for auxiliary with thermal power plant[J]. Distributed Energy, 2020, 5(2): 15-20.
[24]
郭扬,吕一铮,严坤,等. 中国工业园区低碳发展路径研究[J]. 中国环境管理2021, 13(1): 49-58.
GUO Yang, LU Yizheng, YAN Kun, et al. Low-carbon development pathways of industrial parks in China[J]. Environmental conformity Assessment, 2021, 13(1): 49-58.
[25]
刘丁赫,马聪,王勇. 风电最大化消纳的热电联产机组联合优化控制[J]. 分布式能源2021, 6(1): 21-26.
LIU Dinghe, MA Cong, WANG Yong. Joint Optimal Control of Cogeneration Units for Maximum Wind Power Consumption[J]. Distributed Energy, 2021, 6(1): 21-26.
[26]
郑开云. 基于超临界二氧化碳循环的电热储能系统[J]. 分布式能源2020, 5(5): 43-47.
ZHENG Kaiyun. Electrothermal Energy Storage System Based on Supercritical Carbon Dioxide Cycle[J]. Distributed Energy, 2020, 5(5): 43-47.
PDF(3244 KB)

Accesses

Citation

Detail

Sections
Recommended

/