Research on Improved Direct Power Control Strategy of Grid-Side Based on Model Predictive Algorithm

ZHOU Yunfei , MENG Keqilao , WEN Caifeng , JIANG Hongwei , LI Chaofeng

Distributed Energy ›› 2021, Vol. 6 ›› Issue (3) : 47-54.

PDF(2021 KB)
PDF(2021 KB)
Distributed Energy ›› 2021, Vol. 6 ›› Issue (3) : 47-54. DOI: 10.16513/j.2096-2185.DE.2106527
Basic Research

Research on Improved Direct Power Control Strategy of Grid-Side Based on Model Predictive Algorithm

Author information +
History +

Abstract

To improve the steady state performance of the grid-side converter of the flywheel energy storage array system (FESAS) in charge-discharge mode, reduce the harmonic content of the three-phase current on the grid side and accelerate the dynamic response of the system, taking three-phase two-level voltage type converter as the research object, an improved direct power control strategy for grid-side converter based on model predictive algorithm was proposed. Firstly, the grid-side power prediction model was established. And then the corresponding AC-side reference output voltage was calculated according to the above prediction model so that the power deviation in the next sampling period is zero. The switching signal was generated by the space vector pulse width modulation module to control the grid-side converter. In addition, the strategy adopted the outer loop structure of the square of the DC bus voltage, and the control goal was to quickly stabilize the DC bus voltage. Finally, the proposed control strategy was verified on the PSCAD/EMTDC simulation platform, and the results show that, compared with the traditional direct power control strategy, the proposed control strategy not only has superior steady state performance, power quality is consistent with the expected, but also has fast dynamic response.

Key words

flywheel energy storage array system / grid-side converter / model predictive algorithm / direct power control / space vector pulse width modulation

Cite this article

Download Citations
Yunfei ZHOU , Keqilao MENG , Caifeng WEN , et al . Research on Improved Direct Power Control Strategy of Grid-Side Based on Model Predictive Algorithm[J]. Distributed Energy Resources. 2021, 6(3): 47-54 https://doi.org/10.16513/j.2096-2185.DE.2106527

References

[1]
马守达,杨锦成,崔承刚,等. 能源互联网储能技术应用研究[J]. 发电技术2018, 39(5): 412-418.
MA Shouda, YANG Jincheng, CUI Chenggang, et al. Research on application of energy storage technology in Energy Internet [J]. Power Generation Technology, 2018, 39(5): 412-418.
[2]
赵琦,管霖,吕耀棠,等. 储能电站在含光伏电源配电网中的优化配置[J]. 广东电力2018, 31(7): 1-7.
ZHAO Qi, GUAN Lin, Yaotang, et al. Optimized confi-guration of energy storage power station in distribution network with photovoltaic power[J]. Guangdong Electric Power, 2018, 31(7): 1-7.
[3]
冉亮,郭建华,袁铁江. 新能源站侧规模化应用储能的电力系统运行模拟[J]. 分布式能源2020, 5(3): 1-8.
RAN Liang, GUO Jianhua, YUAN Tiejiang. Power system operation simulation of large-scale energy storage on new energy station[J]. Distributed Energy, 2020, 5(3): 1-8.
[4]
刘学,姜新建,张超平,等. 大容量飞轮储能系统优化控制策略[J]. 电工技术学报2014, 29(3): 75-82.
LIU Xue, JIANG Xinjian, ZHANG Chaoping, et al. Optimization control strategies of large capacity flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2014, 29(3): 75-82.
[5]
唐西胜,刘文军,周龙,等. 飞轮阵列储能系统的研究[J]. 储能科学与技术2013, 2(3): 208-221.
TANG Xisheng, LIU Wenjun, ZHOU Long, et al. Flywheel array energy storage system[J]. Energy Storage Science and Technology, 2013, 2(3): 208-221.
[6]
胡文胜,赵宇. 风电变流器网侧SVPWM变换器的控制研究[J]. 四川电力技术2011, 34(04): 55-58.
HU Wensheng, ZHAO Yu. Research on control of grid-side SVPWM converter for wind power converter[J]. Sichuan Electric Power Technology, 2011, 34(04): 55-58.
[7]
朱晓琴,秦生升. 基于SVPWM的直驱式风电系统网侧变换器控制策略[J]. 盐城工学院学报(自然科学版), 2012, 25(1): 37-40.
ZHU Xiaoqin, QIN Haisheng. Control strategy of grid-side converter for direct-drive wind power system based on SVPWM[J]. Journal of Yancheng Institute of Technology(Natural Science Edition), 2012, 25(1): 37-40.
[8]
TANG Y, LOH P C, WANG P, et al. Exploring inherent damping characteristic of LCL-filters for three-phase grid-connected voltage source inverters[J]. IEEE Transactions on Power Electronics, 2012, 27(3): 1433-1443.
[9]
邓知先,宋文胜,曹梦华. 单相PWM整流器模型预测电流控制算法[J]. 中国电机工程学报2016, 36(11): 2996-3004.
DENG Zhixian, SONG Wensheng, CAO Menghua. A model predictive current control scheme for single-phase PWM rectifiers[J]. Proceedings of the CSEE, 2016, 36(11): 2996-3004.
[10]
赵俊梅,任一峰. 自抗扰技术在PWM整流器中的应用[J]. 电气技术2010(7): 53-55.
ZHAO Junmei, REN Yifeng. Application of active disturbance rejection control in PWM rectifier[J]. Electrical Engineering, 2010(7): 53-55.
[11]
王久和,尹虹仁,张金龙,等. 采用功率内环和电压平方外环的电压型PWM整流器[J]. 北京科技大学学报2008, 30(1): 90-95.
WANG Jiuhe, YIN Hongren, ZHANG Jinlong, et al. Three-phase voltage-type PWM rectifiers with inner power loop and outer voltage square loop[J]. Joumal of University of Science and Technology Beijing, 2008, 30(1): 90-95.
[12]
耿强,夏长亮,阎彦,等. 电网电压不平衡情况下PWM整流器恒频直接功率控制[J]. 中国电机工程学报2010, 30(36): 79-85.
GENG Qiang, XIA Changliang, YAN Yan, et al. Direct power control in constant switching frequency for PWM rectifier under unbalanced grid voltage conditions [J]. Proceedings of the CSEE, 2010, 30(36): 79-85.
[13]
ZHANG Y, XIE W, LI Z, et al. Model predictive direct power control of a PWM rectifier with duty cycle optimization[J]. IEEE Transactions on Power Electronics, 2013, 28(11): 5343-5351.
[14]
杨兴武,杨帅,王涛,等. 快速矢量选择的三矢量PWM整流器模型预测低频控制[J]. 现代电力2020, 37(3): 324-330.
YANG Xingwu, YANG Shuai, WANG Tao, et al. Fast selection of three-vector PWM rectifier based on model predictive low frequency control[J]. Modern Electric Power, 2020, 37(3): 324-330.
[15]
朱鹏程. 三相两电平背靠背式功率双向流动电能变换器及其控制策略研究[D]. 南京:南京航空航天大学,2016.
ZHU Pengcheng. Research on three-phase back to back electrical converter with bidirectional power flow and its control strategy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
[16]
贺惟明,李岚,牛浩明,等. 基于SVM P-DPC控制策略的研究[J]. 可再生能源2017, 35(3): 443-447.
HE Weiming, LI Lan, NIU Haoming, et al. Research on control strategy based on SVMP-DPC[J]. Renewable Energy Resources, 2017, 35(3): 443-447.
[17]
宋文胜,冯晓云. 一种单相三电平SVPWM调制与载波SPWM内在联系[J]. 电工技术学报2012, 27(6): 131-138.
SONG Wensheng, FENG Xiaoyun. Relationship between single phase three-level SVPWM and carrier SPWM[J]. Transactions of China Electrotechnical Society, 2012, 27(6): 131-138.
[18]
张强,吴延飞,张保顺,等. 基于三相电流型五电平整流器的空间矢量脉宽调制算法[J]. 电工技术学报2020, 35(24): 5134-5141.
ZHANG Qiang, WU Yanfei, ZHANG Baoshun, et al. Space vector pulse width modulation strategy based on three-phase five-level current source rectifier[J]. Transactions of China Electrotechnical Society, 2020, 35(24): 5134-5141.
[19]
YOUNG H A, Perez M A, RODRIGUEZ J. Analysis of finite-control-set model predictive current control with model parameter mismatch in a three-phase inverter[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3100-3107.
[20]
KOURO S, CORTES P, VARGAS R, et al. Model predictive control—a simple and powerful method to control power converters[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1826-1838.
[21]
杨兴武,王孟结,周荣成,等. AC/DC变换器模型预测低频控制策略[J]. 电力电子技术2019, 53(3): 117-119.
YANG Xingwu, WANG Mengjie, ZHOU Rongcheng, et al. Model predictive low frequency control strategy of AC/DC converter[J]. Power Electronics, 2019, 53(3): 117-119.

Funding

Department of Science and Technology of Inner Mongolia Autonomous Region(2020ZD0016)
PDF(2021 KB)

Accesses

Citation

Detail

Sections
Recommended

/