Review and Prospect of Hydrogen Production Technology From Renewable Energy Under Targets of Carbon Peak and Carbon Neutrality

LI Jianlin, LI Guanghui , LIANG Danxi , MA Suliang

Distributed Energy ›› 2021, Vol. 6 ›› Issue (5) : 1-9.

PDF(3946 KB)
PDF(3946 KB)
Distributed Energy ›› 2021, Vol. 6 ›› Issue (5) : 1-9. DOI: 10.16513/j.2096-2185.DE.2106528
Review

Review and Prospect of Hydrogen Production Technology From Renewable Energy Under Targets of Carbon Peak and Carbon Neutrality

Author information +
History +

Abstract

As a long-term energy storage technology, hydrogen energy storage has a good development prospect. China's 14th five-year plan points out that hydrogen energy development is a long-term development strategy, in which the key points are to improve the conversion efficiency of hydrogen production by electrolysis, improve the design and manufacturing process of electrolyzer stack and electrode, and strengthen the coupling between renewable energy sources and hydrogen energy, so as to promote the realization of the targets of carbon peak and carbon neutrality. From the perspective of the 14th five-year plan and carbon peak and carbon neutrality, this paper first analyzes the development status of renewable energy in China and the generation of abandon wind, water and light, analyzes the feasibility of renewable energy for hydrogen production, and briefly introduces the classification of electrolyzer, the basic principle and research status of hydrogen production technology from electrolytic water. On the basis of the above, the hydrogen production technologies of wind power, photovoltaic power generation and wind solar hybrid multi energy coupling are summarized respectively. The research status of domestic and foreign scholars in this field is summarized, and suggestions and prospects for the development of renewable energy hydrogen production technology in China are put forward, It can provide reference for China to optimize renewable energy hydrogen production system and achieve the goal of decarbonization and emission reduction.

Key words

hydrogen production from renewable energy / green hydrogen / hydrogen production by electrolysis / wind power / photovoltaic power generation / multi energy coupling of renewable energy

Cite this article

Download Citations
Jianlin LI , Guanghui LI , Danxi LIANG , et al. Review and Prospect of Hydrogen Production Technology From Renewable Energy Under Targets of Carbon Peak and Carbon Neutrality[J]. Distributed Energy Resources. 2021, 6(5): 1-9 https://doi.org/10.16513/j.2096-2185.DE.2106528

References

[1]
王卓辉. 我国弃风弃光电量再利用的分析与对策[J]. 中外能源2021, 26(5): 23-26.
WANG Zhuohui. Analysis and countermeasures for reuse of wind and photovoltaic power curtailment in China[J]. Sino-Global Energy, 2021, 26(5): 23-26.
[2]
李建林,李光辉,马速良,等. 碳中和目标下制氢关键技术进展及发展前景综述[J]. 热力发电2021, 50(6): 1-8. [doi: 10.19666/j.rlfd.202101002].
LI Jianlin, LI Guanghui, MA Suliang, et al. Overview of the progress and development prospects of key technologies for hydrogen production under the goal of carbon neutrality[J]. Thermal Power Generation, 2021, 50(6): 1-8. [doi: 10.19666/j.rlfd.202101002].
[3]
邵志刚,衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊2019, 34(4): 469-477.
SHAO Zhigang, YI Baolian. Developing trend and present status of hydrogen energy and fuel cell development[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(4): 469-477.
[4]
MORIARTY P, HONNERY D. Intermittent renewable energy: The only future source of hydrogen?[J]. International Journal of Hydrogen Energy, 2007, 32(12): 1616-1624.
[5]
吉力强,赵英朋,王凡,等. 氢能技术现状及其在储能发电领域的应用[J]. 金属功能材料2019, 26(6): 23-31.
JI Liqiang, ZHAO Yingping, WANG Fan, et al. Current situation of hydrogen energy technology and hydrogen energy storage applied in power generation[J]. Metallic Functional Materials, 2019, 26(6): 23-31.
[6]
中华人民共和国国务院新闻办公室. 《新时代的中国能源发展》白皮书[EB/OL]. [2020-12-21].
[7]
承德市人民政府. 《承德市国民经济和社会发展第十四个五年规划和二〇三五年远景目标纲要》[EB/OL]. [2021-06-15].
[8]
孙鹤旭,李争,陈爱兵,等. 风电制氢技术现状及发展趋势[J]. 电工技术学报2019, 34(19): 4071-4083.
SUN Hexu, LI Zheng, CHEN Aibing, et al. Current status and development trend of hydrogen production technology by wind power[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4071-4083.
[9]
尹文良,刘琳,张存山,等. 含制氢储能的混合传动风电系统建模与运行特性分析[J]. 电力自动化设备2020, 40(10): 64-70.
YIN Wenliang, LIU Lin, ZHANG Cunshan, et al. Modeling and operation performance analysis of hybrid drive wind power generation system with hydrogen energy storage[J]. Electric Power Automation Equipment, 2020, 40(10).
[10]
秦梦珠,张国月,齐冬莲. 风电-氢能耦合系统建模及仿真[J]. 电子技术2016, 45(8): 18-23.
QIN Mengzhu, ZHANG Guoyue, QI Donglian. Modeling and simulation of the integrated system of wind-hydrogen[J]. Electronic Technology, 2016, 45(8): 18-23.
[11]
邵志芳,吴继兰,赵强,等. 风电制氢效费分析模型及仿真[J]. 技术经济2018, 37(6): 69-75, 129.
SHAO Zhifang, WU Jilan, ZHAO Qiang, et al. Cost effectiveness analysis model for wind power produce hydrogen system and simulation[J]. Journal of Technology Economics, 2018, 37(6): 69-75, 129.
[12]
TAKAHASHI R, KINOSHITA H, MURATA T, et al. A cooperative control method for output power smoothing and hydrogen production by using variable speed wind generator[C]//Power Electronics & Motion Control Conference. IEEE, 2008.
[13]
曹蕃,郭婷婷,陈坤洋,等. 风电耦合制氢技术进展与发展前景[J]. 中国电机工程学报2021, 41(6): 2187-2201.
CAO Fan, GUO Tingting, CHEN Kunyang, et al. Key technology and application of the energy internet based on cyber physical systems[J]. Proceedings of the CSEE, 2021, 41(6): 2187-2201.
[14]
邵志芳,杜成刚,俞国勤,等. 东海风电场耦合制氢方案的可行性综合评价[J]. 电力与能源2012, 33(1): 52-54.
SHAO Zhifang, DU Chenggang, YU Guoqin, et al. Comprehensive evaluation of feasibility for coupling to hydrogen in east China sea wind farms[J]. Power & Energy, 2012, 33(1): 52-54.
[15]
VILLALVA M G, GAZOLI J R, FILHO E R. Comprehensive approach to modeling and simulation of photovoltaic arrays[J]. IEEE Transactions on Power Electronics, 2009, 24(5): 1198-1208.
[16]
陈玉芳,周立丽. 光伏-超级电容器-制氢混合系统的建模与控制[J]. 现代电力2017, 34(3): 88-94.
CHEN Yufang, ZHOU Lili. Modelingand control of hybrid PV-supercapacitor-hydrogen system[J]. Modern Electric Power, 2017, 34(3): 88-94.
[17]
卢一菲,陈冲,梁立中. 基于电—氢混合储能的风氢耦合系统建模与控制[J]. 智慧电力2020, 48(3): 7-14.
LU Yifei, CHEN Chong, LIANG Lizhong. Modeling and control of wind-hydrogen coupling system based on electricity-hydrogen hybrid energy storage[J]. Smart Power, 2020, 48(3): 7-14.
[18]
李建林,谭宇良,王含,等. 配网及光储微网储能系统配置优化策略[J/OL]. 高电压技术:1-12[2021-06-24]. https://doi.org/10.13336/j.1003-6520.hve.20201333.
LI Jianlin, TAN Yuliang, WANG Han, et al. Research on configuration optimization of energy storage system in distribution network and optical storage microgrid[J]. High Voltage Engineering: 1-12[2021-06-24]. https://doi.org/10.13336/j.1003-6520.hve.20201333.
[19]
崔吕萍. 光伏制氢热浪中的冷思考[N]. 人民政协报,2021-05-18(007).
[20]
谷雨. DCDC变换器直流耦合光伏制氢方法探讨[J]. 科学技术创新2021(15): 165-167.
GU Yu. Discussion on the method of hydrogen production by DC coupling photovoltaic with DCDC converter[J]. Scientific and Technological Innovation, 2021(15): 165-167.
[21]
ZINI G, ROSA A D. Hydrogen systems for large-scale photovoltaic plants: Simulation with forecast and real production data[J]. International Journal of Hydrogen Energy, 2014, 39(1): 107-118.
[22]
戴凡博. PEM电解水制氢催化剂及直接耦合光伏发电系统建模研究[D]. 杭州:浙江大学,2020.
DAI Fanbo. Study of catalyst in PEM water electrolysis and directly coupling photovoltaic system simulation[D]. Hangzhou: Zhejiang University, 2020.
[23]
ABADLIA I, HASSAINE L, BEDDAR A, et al. Adaptive fuzzy control with an optimization by using genetic algorithms for grid connected a hybrid photovoltaic-hydrogen generation system-ScienceDirect[J]. International Journal of Hydrogen Energy, 2020, 45(43): 22589-22599.
[24]
TEBIBEL H, LABED S. Design and sizing of stand-alone photovoltaic hydrogen system for HCNG production[J]. International Journal of Hydrogen Energy, 2014, 39(8): 3625-3636.
[25]
ZHOU K, FERREIRA J A, HAAN S. Optimal energy management strategy and system sizing method for stand-alone photovoltaic-hydrogen systems[J]. International Journal of Hydrogen Energy, 2008, 33(2): 477-489.
[26]
吴义纯. 含风电场的电力系统可靠性与规划问题的研究[D]. 合肥:合肥工业大学,2006.
WUYichun. Research on reliability and planning of power system with wind farm[D]. Hefei: Hefei University of Technology, 2004.
[27]
GARCÍA-TRIVIO P, TORREGLOSA J P, JURADO F, et al. Optimized operation of power sources of a PV/battery/hydrogen-powered hybrid charging station for electric and fuel cell vehicles[J]. IET Renewable Power Generation, 2019, 13(16): 3022-3032.
[28]
VIVAS F J, DE LAS HERAS A, SEGURA F, et al. A review of energy management strategies for renewable hybrid energy systems with hydrogen backup[J]. Renewable & Sustainable Energy Reviews, 2017, 82(pt.1): 126-155.
[29]
韩舒淇,李文鑫,陈冲,等. 基于风电制氢与超级电容器混合储能的可控直驱永磁风电机组建模与控制[J]. 广东电力2019, 32(5): 1-12.
HAN Shuqi, LI Wenxin, CHEN Chong, et al. Modeling and control of controllable D-pmsg based on hybrid energy storage of wind power hydrogen production and supercapacitor[J]. Guangdong Electric Power, 2019, 32(5): 1-12.
[30]
王侃宏,赵政通,罗景辉,等. 风光互补发电制氢储能系统模拟仿真研究及性能分析[J]. 节能2019, 38(11): 79-84.
WANG Kanhong, ZHAO Zhengtong, LUO Jinghui, et al. Simulation and performance analysis of hydrogen storage system for wind solar complementary power generation[J]. Energy Conservation, 2019, 38(11): 79-84.
[31]
李建林,李光辉,马速良,等. 氢能储运技术现状及其在电力系统中的典型应用[J/OL]. 现代电力:1-12[2021-06-24]. https://doi.org/10.19725/j.cnki.1007-2322.2021.0023.
LI Jianlin, LI Guanghui, MA Suliang, et al. Overview of hydrogen energy storage and transportation technology and its typical application in power system[J/OL]. Modern Electric Power: 1-12[2021-06-24]. https://doi.org/10.19725/j.cnki.1007-2322.2021.0023.
[32]
杨卫华,蒋康乐,孙文叶. 不同应用规模下风光互补发电储能系统优化与设计[J]. 节能2017, 36(10): 40-43+3.
YANG Weihua, JIANG Kangle, SUN Wenye. Optimization and design under different application scde on wind/photo voltaic hybrid generation system[J]. Energy Conservation, 2017, 36(10): 40-43+3.
[33]
蒋康乐. 风光互补联合制氢系统研究及环境效益评价[D]. 邯郸:河北工程大学,2018.
JIANG Kangle. Research and environment benefit evaluation of wind-solar hybrid hydrogen production system[D]. Handan: Hebei University of Engineering, 2018.
[34]
陈建明,肖佳璇. 基于弃风弃光问题的氢储能可行性研究[J]. 技术与市场2019, 26(11): 23-25.
CHEN Jianming, XIAO Jiaxuan. Feasibility study of hydrogen storage based on the problem of abandoned wind and light[J]. Technology and Market, 2019, 26(11): 23-25.

Funding

Project supported by Beijing Millions of Talents Funding Project(2020A30)
Technology Project of Global Energy Internet Research Institute Co., Ltd.(SGGR0000WLJS2100287)
PDF(3946 KB)

Accesses

Citation

Detail

Sections
Recommended

/