Overview of Development Status of Green Hydrogen Production and Application Technology Under Targets of Carbon Peak and Carbon Neutrality

LI Jianlin, LIANG Zhonghao , LIANG Danxi, MA Suliang

Distributed Energy ›› 2021, Vol. 6 ›› Issue (4) : 25-33.

PDF(1939 KB)
PDF(1939 KB)
Distributed Energy ›› 2021, Vol. 6 ›› Issue (4) : 25-33. DOI: 10.16513/j.2096-2185.DE.2106531
Integrated Control Technology for Hydrogen and Renewable Energy Systems

Overview of Development Status of Green Hydrogen Production and Application Technology Under Targets of Carbon Peak and Carbon Neutrality

Author information +
History +

Abstract

Under the targets of carbon peak and carbon neutrality, how to achieve deep decarbonization and accelerate energy transition has become the primary issue facing China. Since hydrogen energy is a secondary clean energy with high energy density and pollution-free, its application will occupy an important position in the future economic and technological development. Therefore, accelerating the layout of the hydrogen energy industry is an effective way to solve my country's primary problems. This article starts with renewable energy and nuclear hydrogen production technology, studies the technical principles and development status of green hydrogen production, and analyzes and summarizes the application approaches of green hydrogen production at home and abroad. With the progress of my country's green hydrogen application technology, green hydrogen, as a green and efficient energy application scenario, continues to emerge, and has a broad application space in the fields of electric power and chemical engineering. Finally, three suggestions are made for the development and business model of my country's green hydrogen industry.

Key words

green hydrogen / hydrogen production by electrolysis of water / hydrogen production by photolysis of water / fuel cell applications / green hydrogen coal chemical industry / hydrogen water

Cite this article

Download Citations
Jianlin LI , Zhonghao LIANG , Danxi LIANG , et al. Overview of Development Status of Green Hydrogen Production and Application Technology Under Targets of Carbon Peak and Carbon Neutrality[J]. Distributed Energy Resources. 2021, 6(4): 25-33 https://doi.org/10.16513/j.2096-2185.DE.2106531

References

[1]
鲁宇,张大弛,韩思雨,等. 高渗透率可再生能源情景下氢能发展分析[J]. 湖北电力2021, 45(1): 53-59.
LU Yu, ZHANG Dachi, HAN Siyu, et al. Analysis on hydrogen energy development under the scenario of high-permeability renewable energy[J]. Hubei Electric Power, 2021, 45(1): 53-59.
[2]
国家发展改革委,国家能源局. 能源技术革命创新行动计划(2016—2030年):发改能源〔2016〕513号[EB/OL]. [2016-06-01].
[3]
国家发展改革委,工业和信息化部,自然资源部,等. 绿色产业指导目录(2019年版):发改环资〔2019〕293号[EB/OL]. [2019-02-14].
[4]
国家能源局综合司. 关于做好可再生能源发展“十四五”规划编制工作有关事项的通知:国能综通新能〔2020〕29号[EB/OL]. [2020-04-09].
[5]
邵志刚,衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊2019, 34(4): 469-477.
SHAO Zhigang, YI Baolian. Developing trend and present status of hydrogen energy and fuel cell development[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(4): 469-477.
[6]
蔡国伟,陈冲,孔令国,等. 风电/光伏/制氢/超级电容器并网系统建模与控制[J]. 电网技术2016, 40(10): 2982-2990.
CAI Guowei, CHEN Chong, KONG Lingguo, et al. Modeling and control of grid-connected system of Wind/PV/Electrolyzer and SC[J]. Power Grid Technology, 2016, 40(10): 2982-2990.
[7]
王雪,张文强,于波,等. 基于DRT和ADIS的SOFC/SOEC电堆电化学阻抗谱研究[J]. 无机材料学报2016, 31(12): 1279-1288.
WANG Xue, ZHANG Wenqiang, YU Bo, et al. SOC Stack impedance characterization and identification based on DRT and ADIS methods[J]. Journal of Inorganic Materials, 2016, 31(12): 1279-1288.
[8]
蔡世超. 多能互补分布式能源系统架构及综合能源管理系统研究[J]. 吉林电力2018, 46(1): 1-4, 16.
CAI Shichao. Research on multi-energy complementary distributed energy system architecture and integrated energy management system[J]. Jilin Electric Power, 2018, 46(1): 1-4, 16.
[9]
贾洋洋,仲海涛,张智晟. 含储氢装置的分布式能源系统的优化经济调度[J]. 广东电力2019, 32(11): 38-44.
JIA Yangyang, ZHONG Haitao, ZHANG Zhisheng. Optimized Economic Dispatch of Distributed Energy System with Hydrogen Storage Device[J]. Guangdong Electric Power, 2019, 32(11): 38-44.
[10]
李争,张蕊,孙鹤旭,等. 可再生能源多能互补制-储-运氢关键技术综述[J]. 电工技术学报2021, 36(3): 446-462.
LI Zheng, ZHANG Rui, SUN Hexu, et al. Review on key technologies of hydrogen generation, storage and transportation based on multi-energy complementary renewable energy[J]. Journal of Electrotechnics, 2021, 36(3): 446-462.
[11]
BILLAH S M B, KABIR K M, ISLAM M O, et al. Hydrogen energy storage based green power plant in seashore of Bangladesh: design and optimal cost analysis[C]//International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT), Coimbatore, India, 2017: 1-5.
[12]
YILMAZ F, OZTURK M, SELBAS R. Design and thermodynamic modeling of a renewable energy based plant for hydrogen production and compression[J]. International Journal of Hydrogen Energy, 2020, 360(3199): 1-12.
[13]
DAWOOD F, ANDA M, SHAFIULLAH G M. Hydrogen production for energy: An overview[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3847-3869.
[14]
张浩. 氢储能系统关键技术及发展前景展望[J]. 山东电力高等专科学校学报2021, 24(2): 8-12.
ZHANG Hao. Key technologies and development prospect of hydrogen energy storage system[J]. Journal of Shandong Electric Power College, 2021, 24(2): 8-12.
[15]
田江南,蒋晶,罗扬,等. 绿色氢能技术发展现状与趋势[J]. 分布式能源2021, 6(2): 8-13.
TIAN Jiangnan, JIANG Jing, LUO Yang, et al. Development Status and Trend of Green Hydrogen Energy Technology[J]. Distributed Energy, 2021, 6(2): 8-13.
[16]
GAHLEITNER G. Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications[J]. International Journal of Hydrogen Energy, 2013, 38(5): 2039-2061.
[17]
ITO H, MIYAZAKI N, ISHIDA M, et al. Cross-permeation and consumption of hydrogen during proton exchange membrane electrolysis[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20439-20446.
[18]
纪钦洪,徐庆虎,于航,等. 质子交换膜水电解制氢技术现状与展望[J]. 现代化工2021, 41(4): 72-76, 81.
JI Qinhong, XU Qinghu, YU Hang, et al. Present status and prospects of hydrogen production technology by proton exchange membrane water electrolysis[J]. Modern Chemical Industry, 2021, 41(4): 72-76, 81.
[19]
李子烨,劳力云,王谦. 制氢技术发展现状及新技术的应用进展[J/OL]. 现代化工:1-5[2021-06-30].
LI Ziye, LAO Liyun, WANG Qian. Development of hydrogen production technologies and application of new technologies[J/OL]. Modern Chemical Industry: 1-5[2021-06-30].
[20]
HAUCH A, KUNGAS R, BLENNOW P, et al. Recent advances in solid oxide cell technology for electrolysis[J]. Science (New York, N. Y. ), 2020, 370(6513).
[21]
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode.[J]. Nature, 1972, 238(5358).
[22]
张晖,刘昕昕,付时雨. 生物质制氢技术及其研究进展[J]. 中国造纸2019, 38(7): 68-74.
ZHAGN Hui, LIU Xinxin, FU Shiyu. Research advances in technology of hydrogen production from biomass[J]. China Paper, 2019, 38(7): 68-74.
[23]
王阳墚旭,陈洁,马榕谷,等. 燃氢燃气轮机燃烧室结构改进[J]. 热力发电2016, 45(8): 53-57.
WAGN Yangliangxu, CHEN Jie, MA Ronggu, et al. Structure modification for combustur in gas turbine turning to burn hydrogen gas[J]. Thermal Power Generation, 2016, 45(8): 53-57.
[24]
财政部,工业和信息化部,科技部,等. 关于开展燃料电池汽车示范应用的通知:财建〔2020〕394号[EB/OL]. [2020-09-16].
[25]
王恒. 氢能发展模式应用[J]. 农村电气化2021(5): 65-69.
WAGN Heng. Application of hydrogen energy development model[J]. Rural Electrification, 2021(5): 65-69.
[26]
钟财富. 国内外分布式燃料电池发电应用现状及前景分析[J]. 中国能源2021, 43(2): 34-37, 73.
ZHONG Caifu. Application status and Prospect Analysis of distributed fuel cell power generation at home and abroad[J]. China Energy, 2021, 43(2): 34-37, 73.
[27]
臧皓,明岗. 家用微型热电联供系统的容量配置优化[J]. 建筑热能通风空调2019, 38(5): 1-6, 12.
ZANG Hao, MING Gang. Capacity configuration optimization of household micro-CHP system[J]. Building Thermal Ventilation and Air Conditioning, 2019, 38(5): 1-6, 12.
[28]
严晓红,薛滔,李泽华,等. 住宅用固体氧化物燃料电池热电联供系统的设计与分析[J]. 可再生能源2018, 36(1): 151-158.
YAN Xiaohong, XUE Tao, LI Zehua, et al. Design and analysis of solid oxide fuel cell cogeneration system for residential use[J]. Renewable Energy, 2018, 36(1): 151-158.
[29]
孟翔宇,顾阿伦,邬新国,等. 中国氢能产业高质量发展前景[J]. 科技导报2020, 38(14): 77-93.
MENG Xangyu, GU Alun, WU Xinguo, et al. The prospect of high quality development of hydrogen energy industry in China[J]. Science and Technology Guidance Newspaper, 2020, 38(14): 77-93.
[30]
黄乃成,吴庆礼,苏来进,等. 燃气轮机与新能源混合发电的互补性研究[J]. 中外能源2020, 25(12): 10-15.
HUANG Naicheng, WU Qingli, SU Laijin, et al. Research on the complementarity of gas turbine and new energy hybrid power generation[J]. Domestic and Foreign Energy, 2020, 25(12): 10-15.
[31]
张景新,孟嘉乐,吕坤键,等. 我国氢应用发展现状及趋势展望[J]. 新材料产业2021(1): 36-39.
ZHAGN Jingxin, MENG Jiale, LV Kunjian, et al. Development status and trend prospects of hydrogen application in China[J]. New Material Industry, 2021(1): 36-39.
[32]
李成智,马炳涛. 中国氢氧火箭发动机技术创新 [J]. 中国科学技术史(英文), 2020, 4(2): 160-182.
LI Chengzhi, MA Bingtao. Technical innovation of LH2/LOX rocket engines in China[J]. Chinese Annals of History of Science and Technology, 2020, 4(2): 160-182.
[33]
RUNTUWENE J, AMITANI H, AMITANI M, et al. Hydrogen-water enhances 5-fluorouracil-induced inhibition of colon cancer[J]. PeerJ, 2015, 3(3): e859.

Funding

Beijing Millions of Talents Funding Project(2020A30)
Technology Project of Global Energy Internet Research Institute Co., Ltd.(SGGR0000WLJS2100287)
PDF(1939 KB)

Accesses

Citation

Detail

Sections
Recommended

/