Research Progress on Optimal Sizing and Energy Management Strategy of Wind-Solar-Hydrogen Hybrid Energy Systems

CAO Fan, GUO Tingting , YIN Aiming , CHEN Kunyang, JIN Xuliang, ZHANG Li, YANG Junhan

Distributed Energy ›› 2021, Vol. 6 ›› Issue (4) : 1-14.

PDF(2010 KB)
PDF(2010 KB)
Distributed Energy ›› 2021, Vol. 6 ›› Issue (4) : 1-14. DOI: 10.16513/j.2096-2185.DE.2106544
Integrated Control Technology for Hydrogen and Renewable Energy Systems

Research Progress on Optimal Sizing and Energy Management Strategy of Wind-Solar-Hydrogen Hybrid Energy Systems

Author information +
History +

Abstract

The wind-solar-hydrogen hybrid energy system is an important and effective solution to effectively solve the shortcomings of strong randomness and large fluctuations of wind power and photovoltaic power generation, and improve the reliability of power supply of the system, which is also an important development direction of the future power generation system. However, the system has a complicated topology structure, many types of equipment, complex characteristics, and diverse control models, which poses great challenges to system structure design and energy management strategy formulation. This article summarized and analyzed in detail from three aspects: system components, design ideas and energy management strategies. The system grid connection status, bus structure and specific components were introduced, the optimal design ideas, methods and evaluation indicators of the system were summarized, and the system energy management strategies with different expected goals were compared. Finally, the development direction of the future wind-solar-hydrogen hybrid energy system control system was proposed, which provides references for the research, development and application development of wind-solar-hydrogen hybrid energy system in China.

Key words

renewable energy / hydrogen energy / hybrid energy system / optimal sizing / energy management strategy

Cite this article

Download Citations
Fan CAO , Tingting GUO , Aiming YIN , et al . Research Progress on Optimal Sizing and Energy Management Strategy of Wind-Solar-Hydrogen Hybrid Energy Systems[J]. Distributed Energy Resources. 2021, 6(4): 1-14 https://doi.org/10.16513/j.2096-2185.DE.2106544

References

[1]
洪博文,MIKETA Asami, GIELEN Dolf, et al. 基于可再生能源的全球电气化路径与远景分析[J]. 中国电力2020, 53(3): 159-166.
HONG Bowen, MIKETA Asami, GIELEN Dolf, et al. Global renewable-based electrification pathways and its long-term scenario analysis[J]. Electric Power, 2020, 53(3): 159-166.
[2]
张运洲,鲁刚,王芃,等. 能源安全新战略下能源清洁化率和终端电气化率提升路径分析[J]. 中国电力2020, 53(2): 1-8.
ZHANG Yunzhou, LU Gang, WANG Peng, et al. Analysis on the improvement path of non-fossil energy consumption proportion and terminal electrification rate under the new energy security strategy[J]. Electric Power, 2020, 53(2): 1-8.
[3]
王建学,李清涛,王秀丽,等. 大规模新能源并网系统电源规划方法[J]. 中国电机工程学报2020, 40(10): 3114-3124.
WANG Jianxue, LI Qingtao, WANG Xiuli, et al. A generation expansion planning method for power systems with large-scale new energy[J]. Proceedings of the CSEE, 2020, 40(10): 3114-3124.
[4]
文云峰,杨伟峰,汪荣华,等. 构建100%可再生能源电力系统述评与展望[J]. 中国电机工程学报2020, 40(6): 1843-1856.
WEN Yunfeng, YANG Weifeng, WANG Ronghua, et al. Review and prospect of toward 100% renewable energy power systems[J]. Proceedings of the CSEE, 2020, 40(6): 1843-1856.
[5]
KOOHI-FAYEGH S, ROSEN M A. A review of energy storage types, applications and recent developments[J]. Journal of Energy Storage, 2020, 27: 101047.
[6]
LI Z, GUO P, HAN R, et al. Current status and development trend of wind power generation-based hydrogen production technology[J]. Energy Exploration & Exploitation, 2019, 37(1): 5-25.
[7]
APOSTOLOU D, ENEVOLDSEN P. The past, present and potential of hydrogen as a multifunctional storage application for wind power[J]. Renewable & Sustainable Energy Reviews, 2019, 112: 917-929.
[8]
ABDIN Z, ZAFARANLOO A, RAFIEE A, et al. Hydrogen as an energy vector[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109620.
[9]
HOSSEINI S E, WAHID M A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development[J]. Renewable & Sustainable Energy Reviews, 2016, 57: 850-866.
[10]
MAZLOOMI K, GOMES C. Hydrogen as an energy carrier: Prospects and challenges[J]. Renewable & Sustainable Energy Reviews, 2012, 16(5): 3024-3033.
[11]
WIDERA B. Renewable hydrogen implementations for combined energy storage, transportation and stationary applications[J]. Thermal Science and Engineering Progress, 2020, 16: 100460.
[12]
赵永志,蒙波,陈霖新,等. 氢能源的利用现状分析[J]. 化工进展2015, 34(9): 3248-3255.
ZHAO Yongzhi, MENG Bo, CHEN Linxin, et al. Utilization status of hydrogen energy[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3248-3255.
[13]
EWAN M, ROCHELEAU R, SWIDER-LYONS K, et al. Development of a hydrogen energy system as a grid frequency management tool[J]. ECS Transactions, 2016. 75: 403-419.
[14]
VIRJI M, RANDOLF G, EWAN M, et al. Analyses of hydrogen energy system as a grid management tool for the Hawaiian Isles[J]. International Journal of Hydrogen Energy, 2020. 45(15): 8052-8066.
[15]
OLATEJU B, KUMAR, SECANELL M. A techno-economic assessment of large scale wind-hydrogen production with energy storage in Western Canada[J]. International Journal of Hydrogen Energy, 2016, 41(21): 8755-8776.
[16]
YOLDAŞ Y, ÖNEN A, MUYEEN S M, et al. Enhancing smart grid with microgrids: Challenges and opportunities[J]. Renewable & Sustainable Energy Reviews, 2017, 72: 205-214.
[17]
DUFO-LÓPEZ R, LUJANO-ROJAS J M, BERNAL-AGUSTÍN J L. Comparison of different lead-acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems[J]. Applied Energy, 2014, 115: 242-253.
[18]
HORKOS P G, YAMMINE E, KARAMI N. Review on different charging techniques of lead-acid batteries[C]//Third International Conference on Technological Advances in Electrical. IEEE, 2015.
[19]
洪志湖,朱亚男,韩莹,等. 基于SOC滞环控制的燃料电池混合动力系统[J]. 太阳能学报2019, 40(1): 268-276.
HONG Zhihu, ZHU Yanan, HAN Ying, et al. Fuel cell hybrid system based on hysteretic control of SOC[J]. Acta Energiae Solaris Sinica, 2019, 40(1): 268-276.
[20]
ZIOGOU C, IPSAKIS D, ELMASIDES C, et al. Automation infrastructure and operation control strategy in a stand-alone power system based on renewable energy sources[J]. Journal of Power Sources, 2011, 196(22): 9488-9499.
[21]
ZHOU K L, FERREIRA J A, DE HAAN S W H. Optimal energy management strategy and system sizing method for stand-alone photovoltaic-hydrogen systems[J]. International Journal of Hydrogen Energy, 2008, 33(2): 477-489.
[22]
TESFAHUNEGN S G, ULLEBERG, VIE P J S, et al. Optimal shifting of photovoltaic and load fluctuations from fuel cell and electrolyzer to lead acid battery in a photovoltaic/hydrogen standalone power system for improved performance and life time[J]. Journal of Power Sources, 2011, 196(23): 10401-10414.
[23]
GIANNAKOUDIS G, PAPADOPOULOS A I, SEFERLIS P, et al. Optimum design and operation under uncertainty of power systems using renewable energy sources and hydrogen storage[J]. International Journal of Hydrogen Energy, 2010, 35(3): 872-891.
[24]
IPSAKIS D, VOUTETAKIS S, SEFERLIS P, et al. The effect of the hysteresis band on power management strategies in a stand-alone power system[J]. Energy, 2008, 33(10): 1537-1550.
[25]
ZHANG Y M, WANG L G, WANG N L, et al. Balancing wind-power fluctuation via onsite storage under uncertainty: Power-to-hydrogen-to-power versus lithium battery[J]. Renewable & Sustainable Energy Reviews, 2019: 116.
[26]
MOHAMMADI A, MEHRPOOYA M. A comprehensive review on coupling different types of electrolyzer to renewable energy sources[J]. Energy, 2018, 158: 632-655.
[27]
NIKOLAIDIS P, POULLIKKAS A. A comparative overview of hydrogen production processes[J]. Renewable & Sustainable Energy Reviews, 2017, 67: 597-611.
[28]
BUTTLER A, SPLIETHO H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454.
[29]
许世森,张瑞云,程健,等. 电解制氢与高温燃料电池在电力行业的应用与发展[J]. 中国电机工程学报2019, 39(9): 2531-2536.
XU Shisen, ZHANG Ruiyun, CHENG Jian, et al. Application and development of electrolytic hydrogen production and high temperature fuel cell in electric power industry[J]. Proceedings of the CSEE, 2019, 39(9): 2531-2536.
[30]
俞红梅,衣宝廉. 电解制氢与氢储能[J]. 中国工程科学2018, 20(3): 58-65.
YU Hongmei, YI Baolian. Hydrogen for energy storage and hydrogen production from electrolysis[J]. Strategic Study of CAE, 2018, 20(3): 58-65.
[31]
邵志刚,衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊2019, 34(4): 469-477.
SHAO Zhigang, YI Baolian. Developing trend and present status of hydrogen energy and fuel cell development[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 469-477.
[32]
曹蕃,陈坤洋,郭婷婷,等. 氢能产业发展技术路径研究[J]. 分布式能源2020, 5(1): 1-8.
CAO Fan, CHEN Kunyang, GUO Tingting, et al. Research on technological path of hydrogen energy industry development[J]. Distributed Energy, 2020, 5(1): 1-8.
[33]
MUYEEN S M, TAKAHASHI R, TAMURA J. Electrolyzer switching strategy for hydrogen generation from variable speed wind generator[J]. Electric Power Systems Research, 2011, 81(5): 1171-1179.
[34]
FANG R M, LIANG Y. Control strategy of electrolyzer in a wind-hydrogen system considering the constraints of switching times[J]. International Journal of Hydrogen Energy, 2019, 44(46): 25104-25111.
[35]
GAO D, JIANG D F, LIU P, et al. An integrated energy storage system based on hydrogen storage: Process configuration and case studies with wind power[J]. Energy, 2014, 66: 332-341.
[36]
ISHAQ H, DINCER I, NATERER G F. Performance investigation of an integrated wind energy system for co-generation of power and hydrogen[J]. International Journal of Hydrogen Energy, 2018, 43(19): 9153-9164.
[37]
YU Y, LI H, WANG H J, et al. A review on performance degradation of proton exchange membrane fuel cells during startup and shutdown processes: Causes, consequences, and mitigation strategies[J]. Journal of Power Sources, 2012, 205: 10-23.
[38]
MORADI M, GHORBANI B, SHIRMOHAMMADI R, et al. Developing of an integrated hybrid power generation system combined with a multi-effect desalination unit[J]. Sustainable Energy Technologies and Assessments, 2019, 32: 71-82.
[39]
LI P Y, ZHENG T L, LI L, et al. An appropriate technique for treating rural wastewater by a flow step feed system driven by wind-solar hybrid power[J]. Environmental Research, 2020, 187: 109651.
[40]
颜卓勇,孔祥威. 非并网风电电解水制氢系统及应用研究[J]. 中国工程科学2015, 17(3): 30-34.
YAN Zhuoyong, KONG Xiangwei. Research on non-grid-connected wind power water-electrolytic hydrogen production system and its applications[J]. Engineering Sciences, 2015, 17(3): 30-34.
[41]
PALENSKY P, DIETRICH D. Demand side management: Demand response, intelligent energy systems, and smart loads[J]. IEEE Transactions on Industrial Informatics, 2011, 7(3): 381-388.
[42]
AMINA M, KODOGIANNIS V S, PETROUNIAS I, et al. A hybrid intelligent approach for the prediction of electricity consumption[J]. International Journal of Electrical Power & Energy Systems, 2012, 43(1): 99-108.
[43]
PILLAI G G, PUTRUS G A, PEARSALL N M. Generation of synthetic benchmark electrical load profiles using publicly available load and weather data[J]. International Journal of Electrical Power & Energy Systems, 2014, 61: 1-10.
[44]
GRÜGER F, HOCH O, HARTMANN J, et al. Optimized electrolyzer operation: Employing forecasts of wind energy availability, hydrogen demand, and electricity prices[J]. International Journal of Hydrogen Energy, 2019, 44(9): 4387-4397.
[45]
马榕谷,陈洁,赵军超,等. 非并网风氢互补系统的容量多目标优化[J]. 太阳能学报2019, 40(2): 422-429.
MA Ronggu, CHEN Jie, ZHAO Junchao, et al. Multi-objective optimization for capacity of non-grid-connected wind/hydrogen hybrid power system[J]. Acta Energiae Solaris Sinica, 2019, 40(2): 422-429.
[46]
LIU Y F, YU S S, ZHU Y, et al. Modeling, planning, application and management of energy systems for isolated areas: A review[J]. Renewable & Sustainable Energy Reviews, 2018, 82: 460-470.
[47]
ZHANG W P, MALEKI A, ROSEN M A, et al. Sizing a stand-alone solar-wind-hydrogen energy system using weather forecasting and a hybrid search optimization algorithm[J]. Energy Conversion and Management, 2019, 180: 609-621.
[48]
GUPTA R A, KUMAR R, BANSAL A K. BBO-based small autonomous hybrid power system optimization incorporating wind speed and solar radiation forecasting[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 1366-1375.
[49]
WANG C, GROZEV G, SEO S. Decomposition and statistical analysis for regional electricity demand forecasting[J]. Energy, 2012, 41(1): 313-325.
[50]
SANTANA Á L, CONDE G B, REGO L P, et al. PREDICT-Decision support system for load forecasting and inference: A new undertaking for Brazilian power suppliers[J]. International Journal of Electrical Power & Energy Systems, 2012, 38(1): 33-45.
[51]
HONG W C, DONG Y C, ZHANG W Y, et al. Cyclic electric load forecasting by seasonal SVR with chaotic genetic algorithm[J]. International Journal of Electrical Power & Energy Systems, 2013, 44(1): 604-614.
[52]
BUNNOON P, CHALERMYANONT K, LIMSAKUL C. Mid-term load forecasting: level suitably of wavelet and neural network based on factor selection[J]. Energy Procedia, 2012, 14: 438-444.
[53]
KHATIB T, IBRAHIM I A, MOHAMED A. A review on sizing methodologies of photovoltaic array and storage battery in a standalone photovoltaic system[J]. Energy Conversion and Management, 2016, 120: 430-448.
[54]
SIDDAIAH R, SAINI R P. A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 376-396.
[55]
贾成真,王灵梅,孟恩隆,等. 风光氢耦合发电系统的容量优化配置及日前优化调度[J]. 中国电力2020, 53(10): 80-87.
JIA Chengzhen, WANG Lingmei, MENG Enlong, et al. Optimal capacity configuration and day-ahead scheduling of wind-solar-hydrogen coupled power generation system[J]. Electric Power, 2020, 53(10): 80-87.
[56]
UPADHYAY S, SHARMA M P. A review on configurations, control and sizing methodologies of hybrid energy systems[J]. Renewable and Sustainable Energy Reviews, 2014, 38: 47-63.
[57]
AL-FALAHI M D A, JAYASINGHE S D G, ENSHAEI H. A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system[J]. Energy Conversion and Management, 2017, 143: 252-274.
[58]
李冲,郑源,葛新峰,等. 风/光混合发电系统的优化方法综述[J]. 水电能源科学2014, 32(3): 199-206.
LI Chong, ZHENG Yuan, GE Xinfeng, et al. Drivability analysis of steel tubular pile foundation of met mast in offshore wind farm[J]. Water Resources and Power, 2014, 32(3): 199-206.
[59]
SEYAM S, AL-HAMED K H M, QURESHY A M M I, et al. Multi-objective optimization of hydrogen production in hybrid renewable energy systems[C]//2019 IEEE Congress on Evolutionary Computation (CEC). 2019.
[60]
SINHA S, CHANDEL S S. Review of software tools for hybrid renewable energy systems[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 192-205.
[61]
葛兴凯,古云蛟. 分布式能源系统规划设计软件分析对比[J]. 电器与能效管理技术2015(3): 57-66.
GE Xingkai, GU Yunjiao. Overview on planning & designing software of distributed energy system[J]. Electrical & Energy Management Technology, 2015(3): 57-66.
[62]
VIVAS F J, HERAS A D, SEGURA F, et al. A review of energy management strategies for renewable hybrid energy systems with hydrogen backup[J]. Renewable & Sustainable Energy Reviews, 2018, 82: 126-155.
[63]
BUKAR A L, TAN C W. A review on stand-alone photovoltaic-wind energy system with fuel cell: System optimization and energy management strategy[J]. Journal of Cleaner Production, 2019, 221: 73-88.
[64]
张虹,孙权,李占军,等. 风氢耦合系统协同控制发电策略研究[J]. 东北电力大学学报2018, 38(3): 15-23.
ZHANG Hong, SUN Quan, LI Zhanjun, et al. Research on synergistic control strategy of wind power coupled with hydrogen system[J]. Journal of Northeast Electric Power University, 2018, 38(3): 15-23.
[65]
蔡国伟,孔令国,彭龙,等. 基于氢储能的主动型光伏发电系统建模与控制[J]. 太阳能学报2016, 37(10): 2451-2459.
CAI Guowei, KONG Lingguo, PENG Long, et al. Modeling and control of active PV generation system based on hydrogrn storage[J]. Acta Energiae Solaris Sinica, 2016, 37(10): 2451-2459.
[66]
WANG C S, NEHRIR M H. Power management of a stand-alone wind/photovoltaic/fuel cell energy system[J]. IEEE Transactions on Energy Conversion, 2008, 23(3): 957-967.
[67]
AHMED N A. On-grid hybrid wind/photovoltaic/fuel cell energy system[C]//2012 10th International Power & Energy Conference (IPEC). IEEE. 2012.
[68]
DAS D, ESMAILI R, XU L Y, et al. An optimal design of a grid connected hybrid wind/photovoltaic/fuel cell system for distributed energy production[C]//31st Annual Conference of IEEE Industrial Electronics Society. IECON 2005. 2005: IEEE.
[69]
KARAMI N, MOUBAYED N, OUTBIB R. Energy management for a PEMFC-PV hybrid system[J]. Energy Conversion and Management, 2014, 82: 154-168.
[70]
GARCIA P, GARCIA C, FERNANDEZ L M, et al. ANFIS-based control of a grid-connected hybrid system integrating renewable energies, hydrogen and batteries[J]. IEEE Transactions on Industrial Informatics, 2014, 10(2): 1107-1117.
[71]
李奇,蒲雨辰,韩莹,等. 电-氢孤岛直流微电网的分层能量管理[J]. 西南交通大学学报2020, 55(5): 912-919.
LI Qi, PU Yuchen, HAN Ying, et al. Hierarchical energy management for electric-hydrogen island DC microgrid[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 912-919.
[72]
BIZON N, OPROESCU M, RACEANU M. Efficient energy control strategies for a standalone renewable/fuel cell hybrid power source[J]. Energy Conversion and Management, 2015, 90: 93-110.
[73]
UZUNOGLU M, ONAR O C, ALAM M S. Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications[J]. Renewable Energy, 2009, 34(3): 509-520.
[74]
TORREGLOSA J P, GARCÍA P, FERNANDEZ L M, et al. Energy dispatching based on predictive controller of an off-grid wind turbine/photovoltaic/hydrogen/battery hybrid system[J]. Renewable Energy, 2015, 74: 326-336.
[75]
BEHZADI M S, NIASATI M. Comparative performance analysis of a hybrid PV/FC/battery stand-alone system using different power management strategies and sizing approaches[J]. International Journal of Hydrogen Energy, 2015, 40(1): 538-548.
[76]
CALDERÓN M, CALDERÓN A J, RAMIRO A, et al. Automatic management of energy flows of a stand-alone renewable energy supply with hydrogen support[J]. International Journal of Hydrogen Energy, 2010, 35(6): 2226-2235.
[77]
EROGLU M, DURSUN E, SEVENCAN S, et al. A mobile renewable house using PV/wind/fuel cell hybrid power system[J]. International Journal of Hydrogen Energy, 2011, 36(13): 7985-7992.
[78]
孟润泉,刘家赢,文波,等. 直流微网混合储能控制及系统分层协调控制策略[J]. 高电压技术2015, 41(7): 2186-2193.
MENG Runquan, LIU Jiaying, WEN Bo, et al. Hybrid energy storage control and system hierarchical coordinated control strategy for DC microgrids[J]. High Voltage Engineering, 2015, 41(7): 2186-2193.
[79]
THANAA F, ESKANDER M N, EL-HAGRY M T. Energy flow and management of a hybrid wind/PV/fuel cell generation system[J]. Energy conversion management, 2006, 47(9-10): 1264-1280.
[80]
STEWART E M, LUTZ A E, SCHOENUNG S, et al. Modeling, analysis and control system development for the Italian hydrogen house[J]. International Journal of Hydrogen Energy, 2009, 34(4): 1638-1646.
[81]
DASH V, BAJPAI P. Power management control strategy for a stand-alone solar photovoltaic-fuel cell-battery hybrid system[J]. Sustainable Energy Technologies and Assessments, 2015, 9: 68-80.
[82]
刘道兵,李留根,李世春,等. 含混合储能系统的独立直流微网协调控制策略[J]. 可再生能源2020, 38(4): 524-531.
LIU Daobing, LI Liugen, LI Shichun, et al. Coordinated control strategy for isolated DC microgrid with hybrid energy storage system[J]. Renewable Energy Resources, 2020, 38(4): 524-531.
[83]
ZHANG F, THANAPALAN K, PROCTER A, et al. Power management control for off-grid solar hydrogen production and utilisation system[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4334-4341.
[84]
GARCÍA P, TORREGLOSA J P, FERNÁNDEZ L M, et al. Improving long-term operation of power sources in off-grid hybrid systems based on renewable energy, hydrogen and battery[J]. Journal of Power Sources, 2014, 265: 149-159.
[85]
DURSUN E, KILIC O. Comparative evaluation of different power management strategies of a stand-alone PV/Wind/PEMFC hybrid power system[J]. International Journal of Electrical Power & Energy Systems, 2012, 34(1): 81-89.
[86]
蔡国伟,陈冲,孔令国,等. 风氢耦合并网系统控制策略[J]. 太阳能学报2018, 39(10): 2970-2980.
CAI Guowei, CHEN Chong, KONG Lingguo, et al. Control strategy of hybrid grid-connected system ofwind and hydrogen[J]. Acta Energiae Solaris Sinica, 2018, 39(10): 2970-2980.
[87]
CANO M H, KELOUWANI S, AGBOSSOU K, et al. Power management system for off-grid hydrogen production based on uncertainty[J]. International Journal of Hydrogen Energy, 2015, 40(23): 7260-7272.
[88]
BRKA A, KOTHAPALLI G, AL-ABDELI Y M. Predictive power management strategies for stand-alone hydrogen systems: Lab-scale validation[J]. International Journal of Hydrogen Energy, 2015, 40(32): 9907-9916.
[89]
PATSIOS C, ANTONAKOPOULOS M, CHANIOTIS A, et al. Control and analysis of a hybrid renewable energy-based power system[C]//The XIX International Conference on Electrical Machines-ICEM 2010, Rome, 2010: 1-6.
[90]
CASTAÑEDA M, CANO A, JURADO F, et al. Sizing optimization, dynamic modeling and energy management strategies of a stand-alone PV/hydrogen/battery-based hybrid system[J]. International Journal of Hydrogen Energy, 2013, 38(10): 3830-3845.
[91]
MOGHADDAM A A, SEIFI A, NIKNAM T, et al. Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source[J]. Energy, 2011, 36(11): 6490-6507.
[92]
ROUHOLAMINI M, MOHAMMADIAN M. Energy mana-gement of a grid-tied residential-scale hybrid renewable generation system incorporating fuel cell and electrolyzer[J]. Energy and Buildings, 2015, 102: 406-416.
[93]
ABEDI S, ALIMARDANI A, GHAREHPETIAN G B, et al. A comprehensive method for optimal power management and design of hybrid RES-based autonomous energy systems[J]. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1577-1587.
[94]
CAU G, COCCO D, PETROLLESE M, et al. Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system[J]. Energy Conversion and Management, 2014, 87: 820-831.
[95]
蒲雨辰,李奇,陈维荣,等. 计及最小使用成本及储能状态平衡的电-氢混合储能孤岛直流微电网能量管理[J]. 电网技术2019, 43(3): 918-927.
PU Yuchen, LI Qi, CHEN Weirong, et al. Energy management for islanded DC microgrid with hybrid electric-hydrogen energy storage system based on minimum utilization cost and energy storage state balance[J]. Power System Technology, 2019, 43(3): 918-927.
[96]
ZERVAS P L, SARIMVEIS H, PALYVOS J A, et al. Model-based optimal control of a hybrid power generation system consisting of photovoltaic arrays and fuel cells[J]. Journal of Power Sources, 2008, 181(2): 327-338.
[97]
ROUHOLAMINI M, MOHAMMADIAN M. Heuristic-based power management of a grid-connected hybrid energy system combined with hydrogen storage[J]. Renewable Energy, 2016, 96: 354-365.
[98]
GARCÍA-TRIVIÑO P, FERNÁNDEZ-RAMÍREZ L M, GIL-MENA A J, et al. Optimized operation combining costs, efficiency and lifetime of a hybrid renewable energy system with energy storage by battery and hydrogen in grid-connected applications[J]. International Journal of Hydrogen Energy, 2016, 41(48): 23132-23144.
[99]
VALVERDE L, PINO F J, GUERRA J, et al. Definition, analysis and experimental investigation of operation modes in hydrogen-renewable-based power plants incorporating hybrid energy storage[J]. Energy Conversion and Management, 2016, 113: 290-311.
[100]
GARCÍA-TRIVIÑO P, LLORENS-IBORRA F, GARCÍA-VÁZQUEZ C A, et al. Long-term optimization based on PSO of a grid-connected renewable energy/battery/hydrogen hybrid system[J]. International Journal of Hydrogen Energy, 2014, 39(21): 10805-10816.
[101]
TORREGLOSA J P, GARCÍA P, FERNÁNDEZ L M, et al. Hierarchical energy management system for stand-alone hybrid system based on generation costs and cascade control[J]. Energy Conversion and Management, 2014, 77: 514-526.
[102]
GARCÍA P, TORREGLOSA J P, FERNÁNDEZ L M, et al. Optimal energy management system for stand-alone wind turbine/photovoltaic/hydrogen/battery hybrid system with supervisory control based on fuzzy logic[J]. International Journal of Hydrogen Energy, 2013, 38(33): 14146-14158.
[103]
TORREGLOSA J P, GARCIATRIVINO P, FERNANDE-ZRAMIREZ L M, et al. Control based on techno-economic optimization of renewable hybrid energy system for stand-alone applications[J]. Expert Systems With Applications, 2016, 51: 59-75.
PDF(2010 KB)

Accesses

Citation

Detail

Sections
Recommended

/