Performance Study of Residential Distributed Bifacial Power Plant in Optimized Light-Environment

LIU Keming , AN Shuxian , PANG Long

Distributed Energy ›› 2021, Vol. 6 ›› Issue (5) : 64-70.

PDF(1852 KB)
PDF(1852 KB)
Distributed Energy ›› 2021, Vol. 6 ›› Issue (5) : 64-70. DOI: 10.16513/j.2096-2185.DE.2106559
Application Technology

Performance Study of Residential Distributed Bifacial Power Plant in Optimized Light-Environment

Author information +
History +

Abstract

In order to verify the power generation advantages of bifacial modules in optimized light-environment distributed power plants, two batches of modules with stable performance after outdoor degradation were selected and the peak power of both sides of some bifacial modules were measured, then a bifacial power plant in optimized light-environment and a monofacial power plant by conventional installation method were built and the monthly energy yield of the two plants were collected, at last the irradiance of both sides and the power of bifacial modules at typical locations were measured. By analyzing the difference of data, it is found that bifacial modules have better peak power bifaciality coefficient, which is beneficial to reduce the mismatch loss between modules and output more power; bifacial power plant has yield gain in all months, the annual yield gain reaches 21.53% and the highest monthly yield gain is about 25%, which is beneficial for distributed power plants to pursue maximum yield per unit area. For distributed power plants with good reflective background, the irradiance gain and equivalent peak power of bifacial modules at different locations are different, so changing the string connection is beneficial to output more power and energy yield.

Key words

light-environment / distributed power plant / bifaciality coefficient / yield gain / equivalent peak power

Cite this article

Download Citations
Keming LIU , Shuxian AN , Long PANG. Performance Study of Residential Distributed Bifacial Power Plant in Optimized Light-Environment[J]. Distributed Energy Resources. 2021, 6(5): 64-70 https://doi.org/10.16513/j.2096-2185.DE.2106559

References

[1]
DET NORSKE VERITAS. More than the sun: The solar outlook[R]. Oakland: DET NORSKE VERITAS, 2021.
[2]
DET NORSKE VERITAS. Energy transition outlook 2021[R]. Oakland: DET NORSKE VERITAS, 2021.
[3]
BLOOMBERG NEF. 4Q 2019 Global PV market outlook[R]. New York: BloombergNEF, 2019.
[4]
高瑞,郭红霞,黄钰琪. 用户侧分布式储能运营平台设计[J]. 电测与仪表2020, 57(22): 105-111.
GAO Rui, GUO Hongxia, HUANG Yuqi. Architecture design of user-side distributed energy storage operation platform[J]. Electrical Measurement and Instrumentation, 2020, 57(22): 105-111.
[5]
苗友忠,李顺昕,雷为民,等. 考虑用户负荷类型的含分布式电源的配电网可靠性评估[J]. 电力科学与技术学报2020, 35(2): 93-99.
MIAO Youzhong, LI Shunxin, LEI Weimin, et al. Reliability evaluation of distribution network with distributed generation considering customer sectors[J]. Journal of Electric Power Science and Technology, 2020, 35(2): 93-99.
[6]
肖琦敏,方志坚,孙浩淞,等. 含分布式电源的智能电网负荷预测研究[J]. 国外电子测量技术2020, 39(2): 82-87.
XIAO Qimin, FANG Zhijian, SUN Haosong, et al. Study on load prediction of smart grid with distributed power supply[J]. Foreign Electronic Measurement Technology, 2020, 39(2): 82-87.
[7]
杨乐新,肖明伟,杜力,等. 分布式光伏电站接入系统方案设计[J]. 分布式能源2018, 3(4): 64-69.
YANG Lexin, XIAO Mingwei, DU Li, et al. Scheme design of access system of distributed photovoltaic power station[J]. Distributed Energy, 2018, 3(4): 64-69.
[8]
马庆虎,王珣,白卫刚,等. 降低光伏组件最佳安装倾角对光伏发电系统发电量影响的研究[J]. 太阳能2020, 41(11): 62-65.
MA Qinghu, WANG Xun, BAI Weigang, et al. Research on influence of reducing optimal installation angle of PV module on power generation of PV power generation system[J]. Solar Energy, 2020, 41(11): 62-65.
[9]
MOHAMED N, KHALIL E-H. Optimal tilt angle and orientation for solar photovoltaic arrays: case of Settat city in Morocco[J]. International Journal of Ambient Energy, 2020, 41(2): 214-223.
[10]
曹相阳,杨斌,陈达伟,等. 基于有效出力曲线的最大风光装机容量评估[J]. 广东电力2020, 33(4): 26-33.
CAO Xiangyang, YANG Bin, CHEN Dawei, et al. Maximum wind and solar installed capacity assessment based on effective output curve[J]. Guangdong Electric Power, 2020, 33(4): 26-33.
[11]
马庆虎,张勃,李宪,等. 不同安装倾角对双面光伏组件光伏电站发电量的影响研究[J]. 太阳能2020, 41(12): 82-84.
MA Qinghu, ZHANG Bo, LI Xian, et al. Research on influence of different installation angles on power generation of PV power station adopting bifacial PV modules[J]. Solar Energy, 2020, 41(12): 82-84.
[12]
PATEL M T, AHMED M S, IMRAN H, et al. Global analysis of next-generation utility-scale PV: Tracking bifacial solar farms[J]. Applied Energy, 2021, 290: 116478.
[13]
潘少峰,陆炜,索博鹏,等. 反光材料对采用双面光伏组件的屋顶光伏电站发电性能的影响分析[J]. 太阳能2020, 41(3): 29-33.
PAN Shaofeng, LU Wei, SUO Bopeng, et al. Analysis of the influence of reflective materials on the power generation performance of rooftop PV power stations using bifacial PV modules[J]. Solar Energy, 2020, 41(3): 29-33.
[14]
宋登元,熊景峰. 双面发电高效率N型Si太阳电池及组件的研制[J]. 太阳能学报2013, 34(12): 2146-2150.
SONG Dengyuan, XIONG Jingfeng. Fabrication and characterization of high efficiency bifacial n-type silicon solar cell and PV modules[J]. Acta Energiae Solaris Sinica, 2013, 34(12): 2146-2150.
[15]
TEGEGNE N A, WENDIMU H, ABDISSA Z, et al. Light-induced degradation of a push-pull copolymer for ITO-free organic solar cell application[J]. Journal of Materials Science: Materials in Electronics, 2020, 31: 21303-21315.
[16]
LIN Dehang, HU Zechen, HE Qiyuan, et al. New insights on LeTID/BO-LID in p-type mono-crystalline silicon[J]. Solar Energy Materials and Solar Cells, 2021, 226: 111085.
[17]
翟金叶,张伟,王子谦,等. 21.5%以上效率Panda-TOPCon双面电池技术研究[J]. 太阳能学报2019, 40(4): 1029-1033.
ZHAI Jinye, ZHANG Wei, WANG Ziqian, et al. Research of >21.5% high efficiency Panda-TOPCon bifacial solar cell[J]. Acta Energiae Solaris Sinica, 2019, 40(4): 1029-1033.
[18]
汪洋,吕欣,侯少攀,等. n型TOPCon-PERT双面太阳电池发电特性分析[J]. 太阳能2020, 41(11): 74-77.
WANG Yang, LV Xin, HOU Shaopan, et al. Analysis of n-TOPCon-PERT bifacial solar cell power generation characteristic[J]. Solar Energy, 2020, 41(11): 72-75.
[19]
陆炜,田介花,潘少峰,等. 双面光伏组件发电特性实证及模拟研究[J]. 太阳能2020, 41(1): 55-60.
LU Wei, TIAN Jiehua, PAN Shaofeng, et al. Study on power generation characteristics of bifacial PV modules[J]. Solar Energy, 2020, 41(1): 55-60.
[20]
李顺美,梅君,姚勇,等. 非晶硅薄膜光伏组件力电性能研究[J]. 绿色建筑2015, 31(2): 67-71.
LI Shunmei, MEI Jun, YAO Yong, et al. The mechanical-electrical properties of amorphous silicon thin film photovoltaic modules[J]. Green Building, 2015, 31(2): 67-71.
[21]
NIES R, CLEMENS F, BENEDIKT H, et al. Amorphous single-junction cells for vertical BIPV application with high bifaciality[J]. Energy Science and Engineering, 2016, 4(3): 183-189.
[22]
YAN Xia, CHEN Ning, SUHAIMI F B, et al. Design, fabrication, and analysis of double-layer antireflection coatings (ARC) for industrial bifacial n-type crystalline silicon solar cells[J]. Applied Optics, 2019, 58(15): E1-E6.
PDF(1852 KB)

Accesses

Citation

Detail

Sections
Recommended

/