PDF(1779 KB)
Research on Performance of Distributed Energy Supply System Based on Co-Gasification of Biomass, Garbage and Sludge in a Dual Fluidized Bed
CHEN Cheng , SUN Yanqian , ZHENG Yilin , CHEN Shiyi , WU Bin , XIANG Wenguo
Distributed Energy ›› 2021, Vol. 6 ›› Issue (6) : 9-16.
PDF(1779 KB)
PDF(1779 KB)
Research on Performance of Distributed Energy Supply System Based on Co-Gasification of Biomass, Garbage and Sludge in a Dual Fluidized Bed
Agricultural and forestry waste, domestic waste and sludge are the main energy-containing solid waste resources in rural areas and small towns. In order to use these wastes efficiently, this paper proposes a method based on the co-gasification of biomass, garbage, and sludge in a dual circulating fluidized bed with a combined cooling, heating and power generation method. Based on the principle of thermochemical equilibrium, a system model was established to analyze the performance and the effects of key parameters. It can be found that the power generation efficiency of the system first increased and then decreased with the rise of the pressure ratio of the dual fluidized bed reactor, and the efficiency could reach the maximum value when the steam/fuel ratio in the gasification process was 1.0. The effect of gasification temperature on cooling and heating efficiency is different from that of power generation. As the gasification temperature increases, the power generation efficiency gradually decreases, but the total efficiency of heating and cooling gradually increases. The research in this paper provides a feasible pathway for the treatment of solid wastes such as biomass, garbage and sludge in small towns and nearby rural areas.
distributed energy / dual fluidized bed gasification / biomass power generation / combined cold, heat and electricity supply
| [1] |
张金梦. 平谷推进农林废弃物资源化利用[N]. 中国能源报,2021-09-27(26).
|
| [2] |
蓝星(北京)化工机械有限公司. 技术创新,为农林废弃物处理开辟新的工业化道路[J]. 环境与生活,2021(7): 88-90.
|
| [3] |
郭家磊,肖一帆,李小燕,等. 污水处理固体废弃物污泥的处置方法研究[J]. 再生资源与循环经济,2021, 14(2): 39-40,44.
|
| [4] |
谭艳霞,郭茵,李柏村,等. 市政污泥复合有机废弃物堆肥的研究进展[J]. 当代化工研究,2021(1): 98-100.
|
| [5] |
国旭涛,蔡洁聪,韩高岩,等. 分布式能源技术与发展现状[J]. 分布式能源,2019, 4(1): 52-59.
|
| [6] |
韩中合,祁超,向鹏,等. 分布式能源系统效益分析及综合评价[J]. 热力发电,2018, 47(2): 31-36.
|
| [7] |
董福贵,张也,尚美美. 分布式能源系统多指标综合评价研究[J]. 中国电机工程学报,2016, 36(12): 3214-3223.
|
| [8] |
项敏,李滢. 生物质与生活垃圾混烧发电可行性分析[J]. 资源节约与环保,2017(4): 17, 19.
|
| [9] |
李晓靖. 农村固体废弃物的资源化处理方法及措施[J]. 资源节约与环保,2021(6): 139-140.
|
| [10] |
韦依伶,巩潇,苏光瑞,等. 城市污泥与园林废弃物堆肥混合应用的效果评价[J]. 绿色科技,2018(24): 30-33.
|
| [11] |
张雯,赵婉月,李法庭,等. 寒冷地区天然气冷热电联供系统的优化配置[J]. 山西建筑,2021, 47(17): 147-148.
|
| [12] |
牛天钰,于金辉. 燃气冷热电联供分布式能源系统及其在四川医院建筑中的应用[J]. 发电技术,2020, 41(3): 288-294.
|
| [13] |
余小兵,杨利,居文平,等. 内燃机余热回收冷热电联供系统性能研究[J/OL]. 热力发电:1-7 [2021-09-24].
|
| [14] |
邹泽宇,刘文泽,蔡泽祥. 基于增广ε-约束法的冷热电联供系统容量优化配置[J]. 广东电力,2019, 32(10): 36-44.
|
| [15] |
邵方杰. 分布式能源站三联供系统的应用研究[J]. 科技与创新,2021(11): 180-181.
|
| [16] |
韩东梅,孙干,蒙青山,等. 北京市燃气热电厂冷热电三联供可行性概述[J]. 城市燃气,2021(4): 43-47.
|
| [17] |
尤菲,俱鑫,刘尚科,等. 针对居民随机需求的冷热电联供与传统供能模式优化研究[J]. 智慧电力,2019, 47(11): 73-78, 85.
|
| [18] |
林俊光,顾新壮,董益华,等. 生物质原料分布式气化多联供系统性能研究[J]. 热力发电,2021, 50(9): 101-106.
|
| [19] |
|
| [20] |
|
/
| 〈 |
|
〉 |