Distribution Network Single-Phase Grounding Fault Location Based on Micro-Phasor Measurement Units

CAO Yun, YAO Fang, WEN Fushuang

Distributed Energy ›› 2022, Vol. 7 ›› Issue (1) : 20-27.

PDF(1620 KB)
PDF(1620 KB)
Distributed Energy ›› 2022, Vol. 7 ›› Issue (1) : 20-27. DOI: 10.16513/j.2096-2185.DE.2207103
Basic Research

Distribution Network Single-Phase Grounding Fault Location Based on Micro-Phasor Measurement Units

Author information +
History +

HeighLight

Accurate fault location of distribution network is of great significance to improve the reliability of power supply and reduce the loss caused by continuous power outage. The application of micro-phasor measurement units(μPMU) in distribution network provides more information for accurate fault location. Therefore, a distribution network single-phase grounding fault location method based on the extreme gradient boosting (XGBoost) of μPMU information and the support vector unit model based on genetic algorithm (SVM-GA) is proposed. Firstly, the fault section is judged by the zero-sequence current direction provided by μPMUS. Then, based on the positive sequence vector of terminal voltage and current and the feature set of actual fault distance, the combined algorithm distance model is trained. Finally, the combined algorithm fault locator is used to locate the fault of the verification set. Through Matlab/Simulink, it is proved that this method can effectively locate the fault and can withstand the influence of transition resistance. Compared with the commonly used method, the positioning accuracy of the combined positioning method is higher.

Cite this article

Download Citations
Yun CAO , Fang YAO , Fushuang WEN. Distribution Network Single-Phase Grounding Fault Location Based on Micro-Phasor Measurement Units[J]. Distributed Energy Resources. 2022, 7(1): 20-27 https://doi.org/10.16513/j.2096-2185.DE.2207103

References

[1]
漫雨兴念,等. 基于多信息融合的自适应单相接地故障在线定位研究与应用[J]. 电测与仪表2019, 56(12): 64-72.
XU Guang, LIU Manyu, WANG Xingnian, et al. Research and application of adaptive on-line positioning of single-phase grounding fault based on multi-information fusion[J]. Electrical Measurement & Instrumentation, 2019, 56(12): 64-72.
[2]
志成智晟远龙,等. 基于RS-SVM算法的配电网故障诊断方法[J]. 广东电力2019, 32(9): 107-114.
JIA Zhicheng, ZHANG Zhisheng, LIU Yuanlong, et al. Fault diagnosis method based on RS-SVM algorithm for power distribution network[J]. Guangdong Electric Power, 2019, 32(9): 107-114.
[3]
瑞闯. 配电网故障定位方法研究[J]. 电网与清洁能源2013, 29(7): 26-30.
LU Xing, WANG Ruichuang. Research on fault location method of distribution network[J]. Power Grid and Clean Energy, 2013, 29(7): 26-30.
[4]
步祥敏芳金萧,等. 基于RVM和阻抗法对串联电容补偿输电线路的故障定位[J]. 电测与仪表2019, 56(8): 9-15.
ZHOU Buxiang, LIAO Minfang, WEI Jinxiao, et al. Fault location of series capacitance compensation transmission line based on RVM and impedance method[J]. Electrical Measurement & Instrumentation, 2019, 56(8): 9-15.
[5]
素娟,等. 基于人工鱼群算法的主动配电网故障定位[J]. 智慧电力2020, 48(6): 112-118, 124.
HU Jue, WEI Gang, XIE Sujuan, et al. Active distribution network fault location method based on artificial fish swarm algorithm[J]. Smart Power, 2020, 48(6): 112-118, 124.
[6]
建文焕栩. 基于改进阻抗法的单相接地故障测距仿真[J]. 电测与仪表2018, 55(3): 84-87.
ZHANG Jianwen, ZHOU Peng, CHEN Huanxu. Simulation of single phase grounding fault location based on improved impedance method[J]. Electrical Measurement & Instrumentation, 2018, 55(3): 84-87.
[7]
SALIM R H, OLIVEIRA K, FILOMENA A D, et al. Hybrid fault diagnosis scheme implementation for power distribution systems automation[J]. IEEE Transactions on Power Delivery, 2008, 23(4): 1846-1856.
[8]
LIAO Y, KEZUNOVIC M. Optimal estimate of transmission line fault location considering measurement errors[J]. IEEE Transactions on Power Delivery, 2007, 22(3): 1335-1341.
[9]
祥玉,等. 基于云边架构和小波神经网络的配电网故障诊断方法[J]. 供用电2020, 37(4): 17-23.
KONG Xiangyu, XU Yong, LI Peng, et al. Fault diagnosis method of distribution network based on cloud edge architecture and wavelet neural network[J]. Power Supply and Electricity, 2020, 37(4): 17-23.
[10]
晓阳生鹏广骁. 基于区域PMU和节点故障注入电流的广域后备保护算法[J]. 电力系统自动化2021, 45(15): 158-165.
TONG Xiaoyang, ZHANG Shengpeng, ZHANG Guangxiao. Wide area backup protection algorithm based on regional PMU and node fault injecting current[J]. Power System Automation, 2021, 45(15): 158-165.
[11]
,等. 基于有限PMU的输电网广域后备保护方法[J]. 电测与仪表2021, 58(10): 101-105.
WANG Yu, GAO Bo, SUN Hui, et al. Power transmission network wide area backup protection method based on finite PMU[J]. Electrical Measurement & Instrumentation, 2021, 58(10): 101-105.
[12]
成斌志皓恒旭,等. 基于微型PMU的配电网多分支架空线路参数无关故障定位算法[J]. 电网技术2019, 43(9): 3202-3211.
WANG Chengbin, YUN Zhihao, ZHANG Hengxu, et al. A parameter-independent fault location algorithm for multi-branch overhead lines in distribution network based on micro-PMU[J]. Power System Technology, 2019, 43(9): 3202-3211.
[13]
志华,等. 基于同步相量测量信息的配电网多功能终端设计与应用[J]. 电气应用2020, 39(1): 88-93.
XU Zhihua, ZHENG Shu, WU Hai, et al. Design and application of multifunctional terminal of distribution network based on synchronous phasor measurement information[J]. Electrical Application, 2020, 39(1): 88-93.
[14]
健磊湛军志远,等. 基于有限μPMU的主动配电网故障定位方法[J]. 电网技术2020, 44(7): 2722-2731.
ZHANG Jianlei, GAO Zhanjun, WANG Zhiyuan, et al. Fault location method of active distribution network based on finite μPMU[J]. Power Network Technology, 2020, 44(7): 2722-2731.
[15]
志临国庆,等. 配电网微型PMU与故障录波装置研究与开发[J]. 电力自动化设备2016, 36(9): 54-59.
LI Jiang, XU Zhilin, LI Guoqing, et al. Research and development of micro-PMU and fault recording device in distribution network[J]. Electric Power Automation Equipment, 2016, 36(9): 54-59.
[16]
维春艳军,等. 基于μPMU同步量测数据的配电网故障定位方法[J]. 电力系统保护与控制2020, 48(4): 39-46.
GE Weichun, ZHANG Shuo, ZHANG Yanjun, et al. Fault location method of distribution network based on μPMU synchronous measurement data[J]. Power System Protection and Control, 2020, 48(4): 39-46.
[17]
DING X, ZHU X, LI X, et al. Research on power grid fault diagnosis method based on PMU data and convolutional neural network[C]//2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2020.
[18]
LUO G, TAN Y, LI M, et al. Stacked auto-encoder based fault location in distribution network[J]. IEEE Access, 2020, 8: 28043-28053.
[19]
CHEN T, GUESTRIN C. XGBoost: A scalable tree boosting system[C]//The 22nd ACM SIGKDD International Conference. ACM, 2016: 785-794.
[20]
景涛龙华积新. 一种用于多分类问题的改进支持向量机[J]. 浙江大学学报(工学版), 2004, 38(12): 100-103, 126.
HUANG Jingtao, MA Longhua, QIAN Jixin. An improved support vector machine for multiple classification problems[J]. Journal of Zhejiang University (Engineering Science), 2004, 38(12): 100-103, 126.
[21]
在滨晓鹏,等. 基于PMU的中压配电网精确故障定位方法及关键技术[J]. 电力系统自动化2020, 44(18): 30-38.
YU Li, JIAO Zaibin, WANG Xiaopeng, et al. Accurate fault location method and key technology of medium voltage distribution network based on PMU[J]. Automation of Electric Power Systems, 2020, 44(18): 30-38.

Funding

National Natural Science Foundation of China(U1509218)
Science and Technology Project of Shanxi Electric Power Company(SGTYHT/18-JS-202)
PDF(1620 KB)

Accesses

Citation

Detail

Sections
Recommended

/