Non-Intrusive Load Identification Method Based on Faster R-CNN

YANG Jincheng, WANG Yongchao, FEI Soujiang, ZHANG Wei, ZENG Jing , LI Na

Distributed Energy ›› 2022, Vol. 7 ›› Issue (2) : 26-33.

PDF(2506 KB)
PDF(2506 KB)
Distributed Energy ›› 2022, Vol. 7 ›› Issue (2) : 26-33. DOI: 10.16513/j.2096-2185.DE.2207204
Basic Research

Non-Intrusive Load Identification Method Based on Faster R-CNN

Author information +
History +

Cite this article

Download Citations
Jincheng YANG , Yongchao WANG , Soujiang FEI , et al . Non-Intrusive Load Identification Method Based on Faster R-CNN[J]. Distributed Energy Resources. 2022, 7(2): 26-33 https://doi.org/10.16513/j.2096-2185.DE.2207204

References

[1]
明飞. 面向电动汽车用电清洁化的车-网联合运行技术研究[D]. 哈尔滨:哈尔滨工业大学,2019.
BAN Mingfei. Research on vehicle-network combined operation technology for electric vehicle cleaning[D]. Harbin: Harbin Institute of Technology, 2019.
[2]
. 基于深度学习模型融合的非侵入负荷识别研究[D]. 北京:华北电力大学,2020.
CHEN Qian. Research on non-intrusive load identification based on deep learning model fusion[D]. Beijing: North China Electric Power University, 2020.
[3]
江洲诗雨赟宁,等. 基于聚类加权随机森林的非侵入式负荷识别[J]. 智慧电力2020, 48(8): 123-129.
CHENG Jiangzhou, XIE Shiyu, ZHANG Yunning, et al. Non-invasive load identification based on clustering weighted random forest[J]. Smart Power, 2020, 48(8): 123-129.
[4]
铁峰明迪. 电力用户负荷模式提取技术及应用综述[J]. 电网技术2016, 40(3): 804-811.
ZHANG Tiefeng, GU Mingdi. Review of power user load pattern extraction technology and application[J]. Power Grid Technology, 2016, 40(3): 804-811.
[5]
NAGI J, YAP K S, TIONG S K, et al. Nontechnical loss detection for metered customers in power utility using support vector machines[J]. IEEE Transactions on Power Delivery, 2010, 25(2): 1162-1171.
[6]
庆玉青青高峰,等. 谱聚类算法在家用负荷识别中的应用[J]. 电测与仪表2015, 52(1): 119-123.
WANG Qingyu, ZHANG Qingqing, ZHANG Gaofeng, et al. Application of spectral clustering algorithm in household load identification[J]. Electrical Measurement and Instrumentation, 2015, 52(01): 119-123.
[7]
朝阳华涛晓利. 基于开启瞬时负荷特征的家电负荷识别[J]. 电工技术学报2015, 30(): 358-364.
Abstract
S1
QU Chaoyang, YU Huatao, GUO Xiaoli. Appliance load identification based on turn-on instantaneous load characteristics[J]. Journal of Electrotechnical Technology, 2015, 30(): 358-364.
S1
[8]
茂海新振,等. 基于PMU实测小扰动数据的负荷参数辨识方法[J]. 电力系统自动化2016, 40(2): 43-48.
MA Ping, WANG Maohai, WU Xinzhen, et al. Load parameter identification method based on PMU measured small disturbance data[J]. Automation of Electric Power Systems, 2016, 40(2): 43-48.
[9]
长海天军,等. 居民负荷设备的非侵入式识别方法研究[J]. 电力信息与通信技术2017, 15(5): 54-60.
LI Gang, YU Changhai, WANG Tianjun, et al. Research on non-intrusive identification method of residential load equipment[J]. Power Information and Communication Technology, 2017, 15(5): 54-60.
[10]
. 基于改进的Faster R-CNN的快递识别系统研究[D]. 南京:南京邮电大学,2021.
WANG Yao. Research on express recognition system based on improved Faster R-CNN[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2021.
[11]
瑞珍. 小波理论及其在图像、信号处理中的算法研究[D]. 西安:西安电子科技大学,2001.
ZHAO Ruizhen. Research on wavelet theory and its algorithm in image and signal processing[D]. Xian: Xidian University, 2001.
[12]
. 基于深度学习的精密铸件缺陷检测方法研究与应用[D]. 太原:太原科技大学,2020.
YANG Kai. Research and application of precision casting defect detection method based on deep learning[D]. Taiyuan: Taiyuan University of Science and Technology, 2020.
[13]
海兵锡幸明一,等. 深度学习在电力设备锈蚀检测中的应用[J]. 广东电力2020, 33(9): 154-165.
FAN Haibing, HU Xixing, LIU Mingyi, et al. Application of deep learning in power equipment corrosion detection[J]. Guangdong Electric Power, 2020, 33(9): 154-165
[14]
BAO J, WEI S, LV J, et al. Optimized faster R-CNN in real-time facial expression classification[J]. IOP Conference Series Materials Science and Engineering, 2020, 790: 012148.
[15]
小明明全,等. 图像理解中的卷积神经网络[J]. 自动化学报. 2016, 42(9): 1300-1312.
CHANG Liang, DENG Xiaoming, ZHOU Mingquan, et al. Convolutional neural networks in image understanding[J]. Journal of Automation. 2016, 42(9): 1300-1312.
[16]
桂梅晓宁,等. 基于改进Faster R-CNN的接触网管帽目标定位算法[J]. 激光与光电子学进展. 2022, 59(4): 140-150.
GU Guimei, CHEN Chong, YU Xiaoning, et al. Target location algorithm for catenary cap based on improved Faster R-CNN[J]. Progress in Lasers and Optoelectronics. 2022, 59(4): 140-150.
[17]
. 基于Faster R-CNN级联的输电塔螺栓缺失检测[J]. 广东电力2021, 34(6): 65-71.
XU MIN, LUO Jin, LIU Hua. Detection of missing pylon bolts based on Faster R-CNN cascade[J]. Guangdong Electric Power, 2021, 34(6): 65-71.
[18]
可军建旭思宝,等. 基于深度可分离卷积及SVD输电线路缺陷检测[J]. 智慧电力2020, 48(10): 64-69, 77.
YANG Kejun, YANG Jianxu, CHEN Sibao, et al. Methods of defect detection in transmission line based on depthwise separable convolution and SVD[J]. Smart Power, 2020, 48(10): 64-69, 77.
[19]
永强世鹏,等. 深度学习目标检测方法综述[J]. 中国图象图形学报. 2020, 25(4): 629-654.
ZHAO Yongqiang, RAO Yuan, DONG Shipeng, et al. A review of deep learning target detection methods[J]. Chinese Journal of Image Graphics. 2020, 25(4): 629-654.
[20]
银燕. 基于多特征融合与机器学习的短期楼宇负荷预测[D]. 南宁:广西大学,2021.
HUANG Yinyan. Short-term building load forecasting based on multi-feature fusion and machine learning[D]. Nanning: Guangxi University, 2021.
[21]
DEBAETS L, RUYSSINCK J, DEVELDER C, et al. Appliance classification using VI trajectories and convolutional neural networks[J]. Energy and Buildings, 2018, 158: 32-36.

Funding

Project supported by Science and Technology Project of State Grid Xinjiang Electric Power Co., Ltd.(5230YX20001C)
PDF(2506 KB)

Accesses

Citation

Detail

Sections
Recommended

/