Load Prediction of Air Conditioning System Based on PCA-SOA-ELM

YAN Xiuying, LI Yiyan, DU Yifan, YAN Xiulian

Distributed Energy ›› 2022, Vol. 7 ›› Issue (2) : 56-63.

PDF(1609 KB)
PDF(1609 KB)
Distributed Energy ›› 2022, Vol. 7 ›› Issue (2) : 56-63. DOI: 10.16513/j.2096-2185.DE.2207208
Application Technology

Load Prediction of Air Conditioning System Based on PCA-SOA-ELM

Author information +
History +

Cite this article

Download Citations
Xiuying YAN , Yiyan LI , Yifan DU , et al. Load Prediction of Air Conditioning System Based on PCA-SOA-ELM[J]. Distributed Energy Resources. 2022, 7(2): 56-63 https://doi.org/10.16513/j.2096-2185.DE.2207208

References

[1]
中电联行业发展与环境资源部. 中国电力行业年度发展报告2020[EB/OL]. 2020-06-15.
[2]
沫霖. 夏季空调负荷为什么值得关注[N]. 中国能源报. 2016-08-29(004).
[3]
洪鹏广智. 国内大型公共建筑空调系统运行管理现状调查研究[J]. 建筑节能2020, 48(10): 8-13.
SUN Hongpeng, CHEN Chen, ZHANG Guangzhi. Investigation and research on the operation and management of air conditioning systems in large public buildings in China[J]. Building Energy Conservation, 2020, 48(10): 8-13.
[4]
效效庆龙,等. 蓄能空调需求响应时段负荷和储释能时长预测[J]. 建筑节能(中英文), 2021, 49(9): 95-104.
REN Xiaoxiao, MENG Qinglong, LI Yang, et al. Prediction of load and energy storage and release duration during demand response period of energy storage air conditioners[J]. Building Energy Conservation (Chinese and English), 2021, 49(9): 95-104.
[5]
祖兵国强,等. 基于多元非线性回归法的商场空调负荷预测[J]. 暖通空调2018, 48(3): 120-125.
ZHOU Xuan, FAN Zubing, LIU Guoqiang, et al. Prediction of air-conditioning load in shopping malls based on multivariate nonlinear regression method[J]. Journal of HV&AC, 2018, 48(3): 120-125.
[6]
忠娇吉礼. 基于相似工况组合权重的空调能耗预测方法[J]. 建筑热能通风空调2017, 36(12): 13-18.
MA Zhongjiao, ZHANG Jili. Air conditioning energy consumption prediction method based on the combined weight of similar working conditions[J]. Building Thermal Energy Ventilation and Air Conditioning, 2017, 36(12): 13-18.
[7]
芮锦毅群治钟. 基于时间序列分析的建筑能耗预测方法[J]. 暖通空调2013, 43(8): 71-77.
ZHOU Ruijin, PAN Yiqun, HUANG Zhizhong. Prediction method of building energy consumption based on time series analysis[J]. Journal of HV&AC, 2013, 43(8): 71-77.
[8]
大四. 改进的季节性指数平滑法预测空调负荷分析[J]. 同济大学学报(自然科学版), 2005, 33(12): 5.
HE Dasi, ZHANG Xu. Improved seasonal exponential smoothing method to predict air conditioning load analysis[J]. Journal of Tongji University (Natural Science Edition), 2005, 33(12): 5.
[9]
LU Shixiang, LIN Guoying, LIU Hanlin, et al. A weekly load data mining approach based on hidden Markov model[J]. IEEE Access, 2019, 7: 34609-34619.
[10]
LI Gen, LI Yunhua, ROOZITALAB F. Midterm load forecasting: A multistep approach based on phase space reconstruction and support vector machine[J]. IEEE Systems Journal, 2020, 14(4): 4967-4977.
[11]
HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501.
[12]
建伟登福,等. 短期负荷预测的集成改进极限学习机方法[J]. 西安交通大学学报2009, 43(2): 106-110.
CHENG Song, YAN Jianwei, ZHAO Dengfu, et al. Integrated and improved extreme learning machine method for short-term load forecasting[J]. Journal of Xi'an Jiaotong University, 2009, 43(2): 106-110.
[13]
红旗飞翎国开,等. 基于经验模态分解和极限学习机的日输电量分时建模预测[J]. 智慧电力2021, 49(9): 63-69.
PANG Hongqi, GAO Feiling, CHENG Guokai, et al. Time-sharing prediction model of daily transmission electricity based on empirical mode decomposition and extreme learning machine[J]. Smart Power, 2021, 49(9): 63-69.
[14]
令春琼琼照峰. 蝙蝠算法优化极限学习机的电力负荷预测模型[J]. 辽宁工程技术大学学报(自然科学版), 2016, 35(1): 89-92.
KONG Lingchun, SUN Qiongqiong, YANG Zhaofeng. Power load prediction model of extreme learning machine optimized by bat algorithm[J]. Journal of Liaoning University of Engineering and Technology (Natural Science Edition), 2016, 35(1): 89-92.
[15]
方成彦珣,等. 基于改进遗传算法优化极限学习机的短期电力负荷预测[J]. 华北电力大学学报(自然科学版), 2018, 45(6): 1-7.
LI Fangcheng, LIU Yi, QI Yanxun, et al. Short-term power load forecasting based on improved genetic algorithm optimization of extreme learning machine[J]. Journal of North China Electric Power University (Natural Science Edition), 2018, 45(6): 1-7.
[16]
YANG Yi, SHANG Zhihao, CHEN Yao, et al. Multi-objective particle swarm optimization algorithm for multi-step electric load forecasting[J]. Energies, 2020, 13(3): 1-19.
[17]
明星淑清,等. 基于核主成分分析和极限学习机的短期电力负荷预测[J]. 电子测量与仪器学报2018, 32(1): 188-193.
DONG Hao, LI Mingxing, ZHANG Shuqing, et al. Short-term power load forecasting based on kernel principal component analysis and extreme learning machine[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(1): 188-193.
[18]
振中傅傲大明,等. 基于最大互信息系数和小波分解的多模型集成短期负荷预测[J]. 计算机应用与软件2021, 38(5): 82-87.
ZHANG Zhenzhong, GUO Fuao, LIU Daming, et al. Multi-model integrated short-term load forecasting based on maximum mutual information coefficient and wavelet decomposition[J]. Computer Applications and Software, 2021, 38(5): 82-87.
[19]
晓江金波,等. 基于智能集中器的短期电力负荷预测[J]. 电力系统及其自动化学报2020, 32(6): 140-145.
CHEN Xiaojiang, LIU Ye, ZHANG Jinbo, et al. Short-term power load forecasting based on intelligent concentrators[J]. Journal of Electric Power Systems and Automation, 2020, 32(6): 140-145.
[20]
若凌小红,等. 基于核极限学习机的飞行器故障诊断方法[J]. 清华大学学报(自然科学版), 2020, 60(10): 795-803.
SONG Jia, SHI Ruoling, GUO Xiaohong, et al. KELM based diagnostics for air vehicle faults[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(10): 795-803.
[21]
SONG Yan, HE Bo, ZHAO Ying, et al. Segmentation of sidescan sonar imagery using Markov random fields and extreme learning machine[J]. IEEE Journal of Oceanic Engineering, 2019: 1-10.
[22]
DHIMAN G, KUMAR V. Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems[J]. Knowledge-Based Systems, 2019, 165(1): 169-196.
[23]
东阳义发明洁,等. 基于粗糙集理论-主成分分析的Elman神经网络短期风速预测[J]. 电力系统保护与控制2014, 42(11): 46-51.
YIN Dongyang, SHENG Yifa, JIANG Mingjie, et al. Short-term wind speed prediction of elman neural network based on rough set theory-principal component analysis[J]. Power System Protection and Control, 2014, 42(11): 46-51.

Funding

Project supported by Low Energy Consumption Building Energy Conservation Innovation Demonstration Project of Shaanxi Province(2017ZDXM-GY-025)
Science and Technology Development Project of Construction Department of Shaanxi Province(2020-K17)
PDF(1609 KB)

Accesses

Citation

Detail

Sections
Recommended

/