Optimal Location and Capacity of Shared Energy Storage Power Station

LI Jianlin,KANG Jingyue,DONG Zixu,CUI Yilin,ZHANG Guoqiang

Distributed Energy ›› 2022, Vol. 7 ›› Issue (3) : 1-11.

PDF(2877 KB)
PDF(2877 KB)
Distributed Energy ›› 2022, Vol. 7 ›› Issue (3) : 1-11. DOI: 10.16513/j.2096-2185.DE.2207301
Basic Research

Optimal Location and Capacity of Shared Energy Storage Power Station

Author information +
History +

HeighLight

In order to effectively suppress the adverse effects of distributed generation and obtain excess profits, an improved multi-objective particle swarm optimization algorithm is proposed to study the optimal location and capacity of shared energy storage power stations in distribution networks. Firstly, this paper establishes the mathematical model of shared energy storage system, lists the optimization conditions and objective functions, and lists the economic cost calculation of shared energy storage. Secondly, the IEEE 33 bus is studied by using the improved multi-objective particle swarm optimization algorithm. In the example, the access number, location and capacity configuration of the shared energy storage system are determined by minimizing the total economic cost, and the charging and discharging power and energy storage SOC (state of charge) of the optimal access number are emphatically analyzed. Finally, the method of optimal location and capacity of battery energy storage system and the characteristics of calculation examples are summarized. The conclusion shows that the shared energy storage system can effectively suppress the adverse effects of distributed power generation, and the economy is better. When two energy storage systems are connected in the distribution network and 0.5 MW is configured respectively, it is the optimal number of location and capacity configuration.

Cite this article

Download Citations
Jianlin LI , Jingyue KANG , Zixu DONG , et al . Optimal Location and Capacity of Shared Energy Storage Power Station[J]. Distributed Energy Resources. 2022, 7(3): 1-11 https://doi.org/10.16513/j.2096-2185.DE.2207301

References

[1]
建林,等. 百兆瓦级电化学储能电站能量管理研究综述[J/OL]. 高电压技术:1-15[2022-03-31].
LI Jianlin, WANG Zhe, ZENG Wei, et al. Review of energy management research on 100-megawatt electrochemical energy storage power stations[J/OL]. High Voltage Engineering: 1-15 [2022-03-31].
[2]
TENG J H, LUAN S W, LEE D J, et al. Optimal charging/discharging scheduling of battery storage systems for distribution systems interconnected with sizeable PV generation systems[J]. IEEE Transactions on Power Systems, 2013, 28(2): 1425-1433.
[3]
SAIT H H, DANIEL S A. New control paradigm for integration of photovoltaic energy sources with utility network[J]. International Journal of Electrical Power & Energy Systems, 2011, 33(1): 86-93.
[4]
恒安,等. 考虑储能调度的可再生能源独立微电网电源规划[J]. 电测与仪表2021, 58(4): 84-91.
LU Cao, GUAN Lin, CHEN Heng'an, et al. Generation planning for renewable energy isolated micro-grid considering energy storage dispatching[J]. Electrical Measurement & Instrumentation, 2021, 58(4): 84-91.
[5]
艳霞凤仙. 含分布式电源配电网的馈线保护新方案[J]. 电力系统自动化2009, 33(12): 71-74.
ZHANG Yanxia, DAI Fengxian. New schemes of feeder protection for distribution networks including distributed generation[J]. Automation of Electric Power Systems, 2009, 33(12): 71-74.
[6]
希科能灵,等. DG容量对配电网电流保护的影响及对策研究[J]. 电力系统保护与控制2010, 38(22): 156-165.
FENG Xike, TAI Nengling, SONG Kai, et al. Research on the impact of DG capacity on the distribution network current protection and countermeasure[J]. Power System Protection and Control, 2010, 38(22): 156-165.
[7]
春菊能灵,等. 基于继电保护与改进算法的储能电站选址定容[J]. 电工技术学报2015, 30(3): 53-60.
YANG Lian, FAN Chunju, TAI Nengling, et al. Energy storage station locating and sizing based on relay protection and improved algorithm[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 53-60.
[8]
青山雨松. 基于启发式矩匹配法的分布式电源选址定容方法[J]. 电力系统及其自动化学报2021, 33(8): 15-23.
ZHENG Jian, XU Qingshan, SHI Yusong. Method of location and capacity determination for distributed generation based on heuristic moment matching method[J]. Proceedings of the CSU-EPSA, 2021, 33(8): 15-23.
[9]
DUONG H Q, MITHULANANTHAN N. Community energy storage and capacitor allocation in distribution systems[C]//Power Engineering Conference. IEEE, 2011.
[10]
CARPINELLI G, CELLI G, MOCCI S, et al. Optimal integration of distributed energy storage devices in smart grids[J]. IEEE Transactions on Smart Grid, 2013, 4(2): 985-995.
[11]
季蕾,等. 基于全球能源互联网典型特征的储能需求及配置分析[J]. 发电技术2021, 42(1): 20-30.
YE Jilei, LI Bin, ZHANG Yu, et al. Energy storage requirements and configuration analysis based on typical characteristics of global energy internet[J]. Power Generation Technology, 2021, 42(1): 20-30.
[12]
GHOFRANI M, ARABALI A, ETEZADI-AMOLI M, et al. A framework for optimal placement of energy storage units within a power system with high wind penetration[J]. IEEE Transactions on Sustainable Energy, 2013, 4(2): 434-442.
[13]
星辰旭峰沛然,等. 基于改进QPSO算法的主动配电网削峰填谷策略研究[J]. 电测与仪表2022, 59(2): 120-125, 140.
LI Xingchen, YUAN Xufeng, LI Peiran, et al. Research on peak load shifting in active distribution network based on improved QPSD algorithm[J]. Electrical Measurement & Instrumentation, 2022, 59(2): 120-125, 140.
[14]
建林忠豪雅欣,等. 锂电池储能系统建模发展现状及其数据驱动建模初步探讨[J]. 油气与新能源2021, 33(4): 75-81.
LI Jianlin, LIANG Zhonghao, LI Yaxin, et al. Development status in modeling of the lithium battery energy storage system and preliminary exploration of its data-driven modeling[J]. Petroleum and New Energy, 2021, 33(4): 75-81.
[15]
小刚宗歧立亭,等. 基于改进多目标粒子群算法的配电网储能选址定容[J]. 电网技术2014, 38(12): 3405-3411.
WU Xiaogang, LIU Zongqi, TIAN Liting, et al. Energy storage device locating and sizing for distribution network based on improved multi-objective particle swarm optimizer[J]. Power System Technology, 2014, 38(12): 3405-3411.
[16]
艳花知寰贵桥. 储能系统的发展及应用[C]//2021年江西省电机工程学会年会论文集,2022: 188-190.
[17]
聪颖小军,等. 并网型风电场氢超混合储能容量配置及控制策略研究[J]. 智慧电力2020, 48(9): 1-8.
NIE Congying, SHEN Xiaojun, LYU Hong, et al. Capacity configuration and control strategy of hydrogen super hybrid energy storage in grid connected wind farm[J]. Smart Power, 2020, 48(9): 1-8.
[18]
易之厚军紫航,等. 基于粒子群算法的配电网储能优质优化研究[J]. 电测与仪表2020, 57(19): 58-65.
TIAN Yizhi, WANG Houjun, CHE Zihang, et al. Research on high-quality energy storage optimization of distribution network based on particle swarm optimization[J]. Electrical Measurement & Instrumentation, 2020, 57(19): 58-65.
[19]
RAMFREZ-ROSADO I J, DOMMGUEZ-NAVARRO J A. New multiobjective tabu search algorithm for fuzzy optimal planning of power distribution systems[J]. IEEE Transactions on Power Systems, 2006, 21(1): 224-233.
[20]
WANG Yongli, WANG Xiaohai, YU Haiyang, et al. Optimal design of integrated energy system considering economics, autonomy and carbon emissions[J]. Journal of Cleaner Production, 2019(225): 563-578.
[21]
YANG Xinshe. A new metaheuristic bat-inspired algorithm[J]. Computer Knowledge & Technology, 2010(284): 65-74.

Funding

Project supported by National Natural Science Foundation of China(51777157)
Power Supply Side Innovation Project of Science and Technology Research Institute of State Power Investment Group Co., Ltd.(126005Jx0120220023)
PDF(2877 KB)

Accesses

Citation

Detail

Sections
Recommended

/