Analysis of Factors Influencing Carbon Emissions of Energy Systems Based on LMDI Model

GUO Yujie,ZHANG Yijin,YANG Fuyuan,TIAN Xueqin,WANG Haiyu

Distributed Energy ›› 2022, Vol. 7 ›› Issue (3) : 30-36.

PDF(1115 KB)
PDF(1115 KB)
Distributed Energy ›› 2022, Vol. 7 ›› Issue (3) : 30-36. DOI: 10.16513/j.2096-2185.DE.2207304
Basic Research

Analysis of Factors Influencing Carbon Emissions of Energy Systems Based on LMDI Model

Author information +
History +

HeighLight

In the context of the "carbon peaking and carbon neutrality" goals, as the main source of carbon emissions in the whole society, carbon reduction in energy activities is particularly critical. In order to clarify the role and contribution of power system carbon emissions, energy consumption intensity, industrial structure and other factors to the carbon emissions of energy system. Firstly, the total energy consumption in China is predicted based on the gray GM(1, 1) model, and the model is tested to ensure the feasibility. Secondly, based on the intergovernmental panel on climate change (IPCC) carbon emission factor method, the carbon emissions of each industry from 2015—2019 are measured based on the data of China's energy balance sheet. On this basis, a carbon emission analysis model is constructed using the logarithmic mean Divisia index (LMDI) method, and the results are standardized to analyze the degree of influence of each effect on the carbon emission of the energy system. The calculation results prove that energy consumption intensity, population size, urbanization level and carbon emission of electricity promote the growth of carbon emission of energy system, while energy consumption intensity, rural population share and industrial structure play a suppressing role.

Cite this article

Download Citations
Yujie GUO , Yijin ZHANG , Fuyuan YANG , et al . Analysis of Factors Influencing Carbon Emissions of Energy Systems Based on LMDI Model[J]. Distributed Energy Resources. 2022, 7(3): 30-36 https://doi.org/10.16513/j.2096-2185.DE.2207304

References

[1]
晓玲继宏朝鹏,等. 中国工业部门碳排放峰值预测及减排潜力研究[J]. 统计与信息论坛2020, 35(9): 72-82.
YUAN Xiaoling, XI Jihong, LI Chaopeng, et al. A study on carbon emission peak forecaast and reduction potential of China's industrial sector [J]. Journal of Statistics and Information, 2020, 35(9): 72-82.
[2]
MASSETTI E, CARRARO C, GUPTA S, et al. Investments in and macroeconomic costs of climate mitigation in the Working Group III contribution to the Fifth Assessment Report of the IPCC[J]. Energy Policy, 2017, 109: 414-417.
[3]
纪远文慧,等. 2010—2015年中国土地利用变化的时空格局与新特征[J]. 地理学报2018, 73(5): 789-802.
LIU Jiyuan, NING Jia, KUANG Wenhui, et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010—2015 [J]. Acta Geographica Sinica, 2018, 73(5): 789-802.
[4]
ZHENG X, LU Y, YUAN J, et al. Drivers of change in China's energy-related CO2 emissions[J]. Proceedings of the National Academy of Sciences, 2020, 117(1): 29-36.
[5]
雅雯. 中国电力行业碳排放影响因素研究[D]. 哈尔滨:哈尔滨工业大学,2019.
BAI Yawen. Research on the factors influencing factors of carbon emissions in China's power industry[D]. Harbin: Harbin Institute of Technology, 2019.
[6]
PACHAURI K, MEYER A. Climate change 2014. synthesis report[J]. Environmental Policy Collection, 2014, 27(2): 408.
[7]
长建虹鸥. 新疆能源消费碳排放过程及其影响因素——基于扩展的Kaya恒等式[J]. 生态学报2016, 36(8): 2151-2163.
WANG Changjian, WANG Fei, ZHANG Hongou. The process of energy-related carbon emissions and influencing mechanism research in Xinjiang [J]. Acta Ecologica Sinica, 2016, 36(8): 2151-2163.
[8]
海涛. 基于LMDI模型的长三角城市能源消费碳排放影响因素分解研究[J]. 商展经济2022(7): 130-132.
LIU Fang, JIANG Haitao. Analysis of influencing factors of carbon emissions from energy consumption in the Yangtze River Delta based on LMDI model[J]. Trade Fair Economy, 2022(7): 130-132.
[9]
叶青哲野守志,等. 中国能源消费碳排放强度及其影响因素的空间计量[J]. 地理学报2013, 68(10): 1418-1431.
CHENG Yeqing, WANG Zheye, ZHANG Shouzhi, et al. Spatiotemporal dynamics of carbon intensity from energy consumption in China [J]. Acta Geographica Sinica, 2013, 68(10): 1418-1431.
[10]
红兵. 我国碳排放影响因素分析[D]. 武汉:华中科技大学,2012.
HE Hongbing. Factors analysis of the influencing China's carbon emissions[D]. Wuhan: Huazhong University of Science and Technology, 2012.
[11]
万波婷婷. 中国不同经济增长阶段碳放影响因素研究[J]. 经济研究2013, 48(4): 106-118.
LU Wanbo, QIU Tingting, DU Lei. A study on influence factors of carbon emissions under different economic growth stages in China [J]. Economic Research Journal, 2013, 48(4): 106-118.
[12]
DONG F, LONG R, BIAN Z, et al. Applying a ruggiero three-stage super-efficiency DEA model to gauge regional carbon emission efficiency: Evidence from China[J]. Natural Hazards, 2017, 87(3): 1453-1468.
[13]
书琪. 基于LMDI-PDA-MMI分解法的我国产业体系碳排放驱动因素研究[J]. 生态经济2022, 38(5): 33-39.
ZHENG Rui, DIAO Shuqi. Investigating the driving factors of carbon emissions in China's industrial system using the LMDI-PDA-MMI Method[J]. Ecological Economy, 2022, 38(5): 33-39.
[14]
运洲红才,等. 中国电力系统低碳发展分析模型构建与转型路径比较[J]. 中国电力2021, 54(3): 1-11.
ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al. Model construction and pathways of low-carbon transition of China's power system[J]. Electric Power, 2021, 54(3): 1-11.
[15]
文荣. 基于灰色系统理论的江苏省能源消费研究[D]. 南京:南京信息工程大学,2016.
CHENG Wenrong. The research on energy consumption of Jiangsu province based on gray system theory[D]. Nanjing: Nanjing University of Information Engineering, 2016.
[16]
路缘. 基于改进的灰色模型在中长期电力负荷预测中的应用研究[D]. 哈尔滨:哈尔滨理工大学,2018.
HE Luyuan. Application of improved gray model in mid and long term load forecasting[D]. Harbin: Harbin Institute of Technology, 2018.
[17]
. 中国碳排放测算分析与减排路径选择研究[D]. 沈阳:辽宁大学,2013.
FAN Xing. Calculation of carbon emissions and research on reduction path in China[D]. Shenyang: Liaoning University, 2013.
[18]
ANG B W, ZHANG F Q. A survey of index decomposition analysis in energy and environmental studies[J]. Energy (Oxford), 2000, 25(12): 1149-1176.
[19]
ANG B W. Decomposition analysis for policymaking in energy: [J]. Energy Policy, 2004, 32(9): 1131-1139.
[20]
军委. 基于LMDI的我国二氧化碳排放影响因素研究[D]. 北京:中国矿业大学,2013.
XU Junwei. Study on the factors of China's carbon dioxide emissions based on LMDI[D]. Beijing: China University of Mining and Technology, 2013
[21]
雨晴. 我国城镇化发展驱动力的三因素分析——基于LMDI的乘法分解[J]. 学习与实践2014(11): 13-18.
YAO Yu, ZHAO Yuqing. A three-factor analysis of the drivers of urbanization development in China—a multiplicative decomposition based on LMDI[J]. Study and Practice, 2014(11): 13-18.

Funding

Project supported by the Independently Set Up Projects of State Grid Economic Research Institute Co., Ltd. (Study on Peak Path of Carbon Emission in Power System Based on New Energy Cloud)
PDF(1115 KB)

Accesses

Citation

Detail

Sections
Recommended

/