Incremental Distribution Network Access Planning Based on Opportunity Constrained Programming

BAI Zhongbin

Distributed Energy ›› 2022, Vol. 7 ›› Issue (3) : 37-43.

PDF(1194 KB)
PDF(1194 KB)
Distributed Energy ›› 2022, Vol. 7 ›› Issue (3) : 37-43. DOI: 10.16513/j.2096-2185.DE.2207305
Basic Research

Incremental Distribution Network Access Planning Based on Opportunity Constrained Programming

Author information +
History +

HeighLight

The location of incremental distribution network connected to public power grid affects its investment economy and the security and stability of main network. To solve this problem, firstly, this paper expounds the randomness of distributed generation output and load in incremental distribution network, takes into account the economy, reliability and stability of incremental distribution network access, and establishes the location planning model and evaluation model of incremental distribution network from the perspective of incremental distribution network and main power grid. Secondly, the opportunity constrained programming is used to deal with the uncertainty of source and load. On this basis, the opportunity constrained programming is linearized by decomposition method. Finally, the simulation experiment of the improved IEEE 33 node system is carried out, and the location planning results of incremental distribution network and the evaluation of stock distribution network are analyzed. The results show that the investment users of incremental distribution network prefer to choose the closer tie line to access, so as to save the line erection cost and improve the power supply reliability, while the main power grid is more expected to improve the voltage quality from the end of the distribution network.

Cite this article

Download Citations
Zhongbin BAI. Incremental Distribution Network Access Planning Based on Opportunity Constrained Programming[J]. Distributed Energy Resources. 2022, 7(3): 37-43 https://doi.org/10.16513/j.2096-2185.DE.2207305

References

[1]
志力. 放开增量配电投资业务关键问题研究综述[J]. 电力建设2017, 38(9): 127-131.
HOU Jia, WU Zhili, CUI Kai. Review on key issues of releasing incremental distribution network investment business[J]. Electric Power Construction, 2017, 38(9): 127-131.
[2]
敦楠,等. 基于实物期权的增量配电网投资决策[J]. 电力系统自动化2018, 42(21): 178-184.
YE Bin, LIU Dunnan, YANG Na, et al. Real options based investment decision-making for incremental distribution network[J]. Automation of Electric Power Systems, 2018, 42(21): 178-184.
[3]
天军,等. 计及新电改政策的配电网变化影响因素及其规划方法综述[J]. 智慧电力2020, 48(9): 108-117.
XU Lu, XIONG Tianjun, YANG Su, et al. Survey of distribution network change factors & planning methods under new electricity reform policy[J]. Smart Power, 2020, 48(9): 108-117.
[4]
SEDGHI M, AHMADIAN A, ALIAKBAR-GOLKAR M. Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation[J]. IEEE Transactions on Power Systems, 2015, 31(1): 304-316.
[5]
LU Z, WEI T, LIANG J, et al. Coordinated day-ahead reactive power dispatch in distribution network based on real power forecast errors[J]. IEEE Transactions on Power Systems, 2019, 31(3): 2472-2480.
[6]
晶晶. 分布式电源接入交直流混合微电网群优化规划研究[J]. 太阳能学报2021, 42(6): 54-62.
DING Ming, PAN Hao, ZHANG Jingjing. Research on optimal planning of AC/DC hybrid microgrid cluster with distributed generation access[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 54-62.
[7]
国伟加胜. 考虑分布式光伏消纳的大型城市配电网规划实践[J]. 供用电2021, 38(10): 26-34.
HE Guowei, XIAO Jun, CAO Jiasheng. Planning practice of large urban distribution network considering distributed photovoltaic consumption[J]. Distribution & Utilization, 2021, 38(10): 26-34.
[8]
俊勇友波,等. 考虑分布式发电商投资的区域配电网光伏储能容量配置[J]. 可再生能源2017, 35(3): 374-383.
DING Lei, LIU Junyong, LIU Youbo, et al. Optimal sizing of photovoltaic and energy storage in distribution network considering investment of distributed power suppliers[J]. Renewable Energy Resources, 2017, 35(3): 374-383.
[9]
富平志宏好晶,等. 计及分布式电源不确定性的微网储能容量博弈优化[J]. 可再生能源2019, 37(7): 1042-1048.
ZHANG Fuping, LI Zhihong, CHANG Haojing, et al. Game-based optimization of energy storage capacity for micro-grid considering uncertainty of distributed generation[J]. Renewable Energy Resources, 2019, 37(7): 1042-1048.
[10]
晨旭书荣,等. 基于改进萤火虫算法的考虑风光概率分布储能容量优化配置[J]. 电气自动化2022, 44(2): 7-10.
LI Chenxu, WANG Xin, WEI Shurong, et al. Optimal allocation of energy storage capacity based on improved firefly algorithm considering wind and solar probability distribution[J]. Electrical Automation, 2022, 44(2): 7-10.
[11]
永君,等. 考虑时序特性的分布式电源接入配电网规划[J]. 计算机仿真2022, 39(2): 51-55, 72.
LIN Yongjun, JING Chen, CAO Cui, et al. Distributed power supply access distribution network planning with timing characteristics[J]. Computer Simulation, 2022, 39(2): 51-55, 72.
[12]
存昊泽宁,等. 基于机会约束规划的含电动汽车主动配电网能量管理方法[J/OL]. 电力自动化设备:1-9[2022-04-03].
SU Su, WEI Cunhao, LI Zening, et al. Energy management method of active distribution network with electric vehicles based on chance-constrained programming[J/OL]. Electric Power Automation Equipment, 1-9[2022-04-03].
[13]
富春,等. 基于全寿命周期成本的储能成本分析[J]. 分布式能源2020, 5(3): 34-38.
FU Xu, LI Fuchun, YANG Xin, et al. Cost analysis of energy storage based on life cycle cost[J]. Distributed Energy, 2020, 5(3): 34-38.
[14]
喜兰振伟,等. 风电集群的储能容量优化配置[J]. 电气自动化2021, 43(6): 23-25.
WANG Kai, LI Xilan, LIU Zhenwei, et al. Optimal configuration of energy storage capacity for wind power clusters[J]. Electrical Automation, 2021, 43(6): 23-25.
[15]
卫东,等. 长期并网运行的海岛微电网电源容量优化配置[J]. 分布式能源2019, 4(5): 75-82.
REN Min, LI Weidong, HU Bo, et al. Optimal allocation of power capacity of island microgrid with long-term grid-connected operation[J]. Distributed Energy, 2019, 4(5): 75-82.
[16]
寿生晓东,等. 基于多级协调的配电网电压质量优化方法研究[J]. 浙江电力2019, 38(8): 85-90.
ZHAO Shousheng, FAN Xiaodong, YANG Zhen, et al. Research on voltage quality optimization method of distribution networks based on multi-level coordination[J]. Zhejiang Electric Power, 2019, 38(8): 85-90.
[17]
志强业伟志鹏,等. 柔性多状态开关与分布式储能系统联合接入规划[J/OL]. 电力系统自动化:1-13[2022-04-03].
HUANG Zhiqiang, CHEN Yewei, MAO Zhipeng, et al. Joint access planning of soft open point and distributed energy storage system [J/OL]. Automation of Electric Power Systems, 1-13[2022-04-03].
[18]
WU H, SHAHIDEHPOUR M, LI Z, et al. Chance-constrained day-ahead scheduling in stochastic power system operation[J]. IEEE Transactions on Power Systems, 2014, 29(4): 1583-1591.
[19]
仲康,等. 冀北电网省地协调AVC控制模式的实现[J]. 华北电力技术2016(6): 1-5.
WEI Zhongkang, LU Feng, TANG Lei. Achievement of province-regional co-ordinate control in Jibei grid [J]. North China Electric Power, 2016(6): 1-5.
PDF(1194 KB)

Accesses

Citation

Detail

Sections
Recommended

/