Operation Strategy Optimization of Gas Triple Supply Coupled Photovoltaic System

CHEN Xiaonan,PEI Dongsheng,XU Ting,XU Zhongqiu,JIN Ming

Distributed Energy ›› 2022, Vol. 7 ›› Issue (5) : 30-38.

PDF(1852 KB)
PDF(1852 KB)
Distributed Energy ›› 2022, Vol. 7 ›› Issue (5) : 30-38. DOI: 10.16513/j.2096-2185.DE.2207505
Basic Research

Operation Strategy Optimization of Gas Triple Supply Coupled Photovoltaic System

Author information +
History +

Abstract

In order to improve the energy efficiency of the gas triplex coupled photovoltaic system, a distributed project of an office building in Shanghai is taken as an example, in consideration of project equipment characteristics, electricity price and power generation cost of the project, first, the system performance evaluation and economic calculation model is established, and then the economy of the triple power supply system and the state grid direct power supply system under different boundary conditions are analyzed and compared. Finally, the system operation strategies under typical daily load conditions in winter and summer are determined, when the optimization target is the comprehensive operation cost of the system. The results show that the triplex power supply system has good economic benefits in the application range at the peak and flat stage of electricity price. In the low stage of electricity price, when the natural gas price is higher than 3.69 yuan/m3 in winter and 3.99 yuan/m3 in summer, the operation cost of direct power supply to the state grid is lower. Compared with the conventional scheme, the optimized system operation strategy scheme can reduce the operation cost by 1.904 2 million yuan and the carbon dioxide emissions by 236.06 t per year, and the economic and environmental benefits are significant.

Key words

gas triplex supply / coupled photovoltaic / operating cost / operation strategy

Cite this article

Download Citations
Xiaonan CHEN , Dongsheng PEI , Ting XU , et al . Operation Strategy Optimization of Gas Triple Supply Coupled Photovoltaic System[J]. Distributed Energy Resources. 2022, 7(5): 30-38 https://doi.org/10.16513/j.2096-2185.DE.2207505

References

[1]
叶松. 论天然气冷热电三联供的优缺点:以上海中心大厦天然气三联供项目为例[J]. 现代工业经济和信息化2021, 11(7): 217-218.
YE Song. On the advantages and disadvantages of natural gas combined cold, heat and electricity supply: A case study of the natural gas combined supply project of Shanghai Tower[J]. Modern Industrial Economy and Informatization, 2021, 11(7): 217-218.
[2]
国旭涛,韩高岩,吕洪坤. 冷热电三联供系统建模方法综述[J]. 浙江电力2020, 39(4): 83-93.
GUO Xutao, HAN Gaoyan, Hongkun. Overview of modeling methods of combined cooling, heating and electric power supply system [J]. Zhejiang Electric Power, 2020, 39(4): 83-93.
[3]
薛晓东,韩巍,王晓东,等. 适合分布式冷热电联供系统的中小型发电装置[J]. 发电技术2020, 41(3): 252-260.
XUE Xiaodong, HAN Wei, WANG Xiaodong, et al. Small and medium-scale power generation devices suiting for distributed combined cooling, heating and power system[J]. Power Generation Technology, 2020, 41(3): 252-260.
[4]
慕明良,李守茂,孟祥鹤,等. 考虑灵活性的冷热电联供型微网优化调度[J]. 智慧电力2020, 48(3): 39-46, 95.
MU Mingliang, LI Shoumao, MENG Xianghe, et al. Optimal scheduling of CCHP microgrid considering flexibility[J]. Smart Power, 2020, 48(3): 39-46, 95.
[5]
张瑜. 某商业综合体项目燃气冷热电三联供系统发电设备容量的确定方法[J]. 重庆建筑2022, 21(4): 60-62, 64.
ZHANG Yu. Determination method of power generation equipment capacity of gas cooling, heat and electricity triple supply system in a commercial complex project[J]. Chongqing Architecture, 202, 21 (4): 60-62, 64.
[6]
周守军,马聪聪. 冷热电三联供系统蓄能装置优化运行策略分析[J]. 建筑热能通风空调2022, 41(2): 13-17.
ZHOU Shoujun, MA Congcong. Analysis on optimal operation strategy of energy storage device in cold, hot and electric triple power supply system[J]. Building Heat Energy, Ventilation and Air Conditioning, 222, 41(2): 13-17.
[7]
倪俊,徐晓伟,付鑫,等. 基于需求响应的分布式能源冷热电三联供系统配置优化[J]. 自动化技术与应用2021, 40(10): 112-116.
NI Jun, XU Xiaowei, FU Xin, et al. Configuration optimization of distributed energy cold, heat and power supply system based on demand response [J]. Automation Technology and Application, 2021, 40(10): 112-116.
[8]
孙雯,陈紫薇,张玉琼,等. 基于动态规划的SOFC冷热电三联供综合能源系统日前经济调度[J]. 中国电机工程学报2022, 42(21): 7775-7784.
SUN Wen, CHEN Ziwei, ZHANG Yuqiong, et al. Day-ahead economic scheduling of sofc integrated energy system based on dynamic programming[J]. Proceedings of the CSEE, 2022, 42(21): 7775-7784.
[9]
YAN Rujing, WANG Jiangjiang, WANG Jiahao, et al. A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties[J]. Energy, 2022, 247: 123498.
[10]
TAKLEH R H, ZARE V, MOHAMMADKHANI F, et al. Proposal and thermoeconomic assessment of an efficient booster-assisted CCHP system based on solar-geothermal energy[J]. Energy, 2022, 246: 123360.
[11]
LI Yaohong, TIAN Ran, WEI Mingshan. Operation strategy for interactive CCHP system based on energy complementary characteristics of diverse operation strategies[J]. Applied Energy, 2022, 310: 118415.
[12]
CHEN Xiaoyuan, CHEN Yu, ZHANG Mingshun, et al. Hospital-oriented quad-generation (HOQG): A combined cooling, heating, power and gas (CCHPG) system[J]. Applied Energy, 2021, 300: 117382.
[13]
BAE S, NAM Y, CUNHA D I. Economic solution of the tri-generation system using photovoltaic-thermal and ground source heat pump for zero energy building (ZEB) realization[J]. Energies, 2019, 12(17): 3304.
[14]
YAN Rujing, LU Zherui, WANG Jiangjiang, et al. Stochastic multi-scenario optimization for a hybrid combined cooling, heating and power system considering multi-criteria[J]. Energy Conversion and Management, 2021, 233: 113911.
[15]
杨镇阁,杨天海,李琦芬,等. 太阳能与冷热电三联供系统耦合特性分析[J]. 上海节能2017(12): 700-705.
YANG Zhenge, YANG Tianhai, LI Qifen, et al. Analysis of coupling characteristics of solar energy and cold, heat and electricity triple power supply system [J]. Shanghai Energy Conservation, 2017 (12): 700-705.
[16]
杨晓辉,刘康. 不同类型太阳能辅助三联供系统的评价与案例分析[J]. 实验技术与管理2021, 38(3): 51-56, 60.
YANG Xiaohui, LIU Kang. Evaluation and case analysis of different types of solar assisted triplexy systems [J]. Journal of Experimental Technology and Management, 2021, 38(3): 51-56, 60.
[17]
张衡. 聚光光伏/光热一体化三联供系统开发与应用研究[D]. 北京:华北电力大学,2019.
ZHANG Heng. Development and application research of concentrated photovoltaic/photothermal integrated triple power supply system [D]. Beijing: North China Electric Power University, 2019.
[18]
郝欣,王江江. 太阳能辅助燃气蒸汽联合循环的冷热电联产系统[J]. 分布式能源2019, 4(6): 29-34.
HAO Xin, WANG Jiangjiang. A combined cooling, heating and power system based on solar-assisted gas-steam combined cycle[J]. Distributed Energy, 2019, 4(6): 29-34.
[19]
陈红兵,孙俊辉,王聪聪,等. 应用遗传算法优化BP神经网络预测太阳能PV/T系统热电产出 [J]. 热科学与技术2021, 20(5): 480-487.
CHEN Hongbing, SUN Junhui, WANG Congcong, et al. Application of genetic algorithm to optimize BP neural network to predict thermal power production in solar PV/T system[J]. Journal of Thermal Science and Technology, 2021, 20(5): 480-487.
[20]
罗迟,孙培杰,章恺,等. 一种新型太阳能喷射式电热(冷)联供系统的热力性能及经济性分析[J]. 动力工程学报2021, 41(8): 684-691.
LUO Chi, SUN Peijie, Zhang Kai, et al. Thermal performance and economic analysis of a new solar jet electric heating (cooling) system[J]. Chinese Journal of Power Engineering, 2021, 41(8): 684-691.
[21]
FAIZAN K, RAJESH K, FARRUKH K. Feasibility study of a new solar based trigeneration system for fresh water, cooling, and electricity production[J]. International Journal of Energy Research, 2021, 45(13): 19500-19508.
[22]
CHEN Hongkai, LI Zeyu, XU Yongrui. Assessment and parametric analysis of solar trigeneration system integrating photovoltaic thermal collectors with thermal energy storage under time-of-use electricity pricing[J]. Solar Energy, 2020, 206: 875-899.
[23]
CHEN Hongkai, LI Zeyu, XU Yongrui. Evaluation and comparison of solar trigeneration systems based on photovoltaic thermal collectors for subtropical climates[J]. Energy Conversion and Management, 2019, 199(C): 111959-111959.
[24]
CALISE F, D'ACCADIA M D, PALOMBO A, et al. Dynamic simulation of a novel high-temperature solar trigeneration system based on concentrating photovoltaic/thermal collectors[J]. Energy, 2013, 61: 72-86.
[25]
CALISE F, D'ACCADIA M D, VANOLI L. Design and dynamic simulation of a novel solar trigeneration system based on hybrid photovoltaic/ thermal collectors (PVT)[J]. Energy Conversion and Management, 2012, 60: 214-225.
[26]
BELLOS E, TZIVANIDIS C. Parametric analysis and optimization of a solar driven trigeneration system based on ORC and absorption heat pump[J]. Journal of Cleaner Production, 2017, 161: 493-509.
[27]
李伟,章维维. 冷热电三联供系统运行方案的比较分析[J]. 分布式能源2017, 2(3): 45-49.
LI Wei, ZHANG Weiwei. Comparative analysis of operation scheme for CCHP system[J]. Distributed Energy, 2017, 2(3): 45-49.
PDF(1852 KB)

Accesses

Citation

Detail

Sections
Recommended

/