Research and Application of Optimal Road Design Algorithm for Wind Farm

YANG Kuibin,DU Haotian,WANG Qijun,LIU Ping

Distributed Energy ›› 2022, Vol. 7 ›› Issue (5) : 56-62.

PDF(9366 KB)
PDF(9366 KB)
Distributed Energy ›› 2022, Vol. 7 ›› Issue (5) : 56-62. DOI: 10.16513/j.2096-2185.DE.2207508
Application Technology

Research and Application of Optimal Road Design Algorithm for Wind Farm

Author information +
History +

Abstract

Road optimization and reasonable arrangement of wind turbines have an important impact on the construction cost of wind farms. In order to effectively reduce the construction cost of wind farms, the Jensen wake model in this paper optimizes wind turbine locations, comprehensively considering Dijkstra's method, contour tree search method and Prim method. This paper proposes an automatic optimization method of roads in wind farms based on the arrangement of wind turbines. Under the principle of the shortest path, a Y-shaped fork road scheme that is closer to the actual project is obtained by improving the Prim method, which effectively reduces the engineering volume and cost of the road in the field.

Key words

wind farm / arrangement of wind turbines / automatic optimization

Cite this article

Download Citations
Kuibin YANG , Haotian DU , Qijun WANG , et al. Research and Application of Optimal Road Design Algorithm for Wind Farm[J]. Distributed Energy Resources. 2022, 7(5): 56-62 https://doi.org/10.16513/j.2096-2185.DE.2207508

References

[1]
刘纲,雷振博,杨微,等. 风机塔架PS-TMD被动控制装置机理分析及参数调谐优化研究[J]. 工程力学2021, 38(12): 137-146.
LIU Gang, LEI Zhenbo, YANG Wei, et al. Mechanism analysis and parameter tuning optimization for wind turbine towers with PS-TMD passive control devices [J]. Engineering Mechanics, 2021, 38(12): 137-146.
[2]
田琳琳,赵宁,武从海. 风电场的机组布局优化研究[J]. 太阳能学报2014, 35(3): 462-468.
TIAN Linlin, ZHAO Ning, WU Conghai. Numerical analysis of the wind farm layout optimization[J]. ACTA Energiae Solaris Sinica, 2014, 35(3): 462-468.
[3]
GUIRGUIS D, ROMERO D A, AMON C H. Toward efficient optimization of wind farm layouts: Utilizing exact gradient information[J]. Applied Energy, 2016, 179: 110-123.
[4]
TURNER S D O, ROMERO D A, ZHANG P Y, et al. A new mathematical programming approach to optimize wind farm layouts[J]. Renewable Energy, 2014, 63: 674-680.
[5]
ARCHER R, NATES G, DONOVAN S, et al. Wind turbine interference in a wind farm layout optimization mixed integer linear programming model[J]. Wind Engineering, 2011, 35(2): 165-175.
[6]
HOU Junyi, YU Lei, FEI Shumin. A high-quality voxel 3D reconstruction system for large scenes based on the branch and bound method[J]. Expert Systems with Applications, 2022, 194: 1-12.
[7]
KIRCHNER-BOSSI N, PORTE-AGEL F. Realistic wind farm layout optimization through genetic algorithms using a Gaussian wake model[J]. Energies, 2018, 11(12): 1-26.
[8]
JENSEN N O. A note on wind generator interaction[M]. Roskilde, Denmark: Rise National Laboratory, 1983.
[9]
KATIC I, HOJSTRUP J, JENSEN N O. A simple model for cluster efficiency[C]//European wind energy association conference and exhibition. Rome, Italy: A. Raguzzi, 1986: 407-410.
[10]
MOSETTI G, POLONI C, DIVIACCO B. Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 51(1): 105-116.
[11]
GRADY S A, HUSSAINI M Y, ABDULLAH M M. Placement of wind turbines using genetic algorithms[J]. Renewable energy, 2005, 30(2): 259-270.
[12]
郑弈,谢亚琴. 基于Dijkstra算法改进的飞行器航迹快速规划算法[J]. 电子测量技术2022, 45(12): 73-79.
ZHENG Yi, XIE Yaqin. Improved fast flight path planning algorithm for aircraft based on Dijkstra algorithm [J]. Electronic Measurement Technique, 2022, 45(12): 73-79.
[13]
WAN C, WANG J, YANG G, et al. Optimal micro-siting of wind farms by partice swarm optimization[C]//Proceedings of the International Conference on Swarm Intelligence (ICST 2010). Beijing, China, 2010, 6145: 198-205.
[14]
WAN C, WANG J, YANG G, et al. Optimal micro-siting wind turbines by genetic algorithms based on improved wind and turbine models[C]//Proceedings of the 48th IEEE Conference on Decision and Control. Shanghai, China. 2009: 5092-5097.

Funding

2022 Key R&D Program of Sichuan Province(2022YFG0118)
PDF(9366 KB)

Accesses

Citation

Detail

Sections
Recommended

/