Peak Regulating Demand and Energy Storage Power Supply Configuration of Xinjiang Power Grid

FU Xu,WANG Yingyu,ZHANG Yujin

Distributed Energy ›› 2022, Vol. 7 ›› Issue (5) : 63-68.

PDF(1111 KB)
PDF(1111 KB)
Distributed Energy ›› 2022, Vol. 7 ›› Issue (5) : 63-68. DOI: 10.16513/j.2096-2185.DE.2207509
Application Technology

Peak Regulating Demand and Energy Storage Power Supply Configuration of Xinjiang Power Grid

Author information +
History +

Abstract

Vigorously developing new energy is an important means to achieve the "double carbon target" . Aiming at the problem of high power abandoning caused by the large-scale development of new energy in Xinjiang power grid, this paper analyzes the prospective annual load peaking demand of Xinjiang power grid and the configuration scheme of energy storage power source, and divides the load peaking balance problem into two sub-problems. Firstly, the load peak regulation problem is analyzed, that is, whether the power source installation scheme can normally follow the change of daily load. Then, the problem of new energy peak regulation in long time scale is analyzed, that is, the problem of water, wind and light abandonment is analyzed. With the constraint that the utilization rate of new energy is greater than 95%, the peak-regulating power supply allocation scheme of Xinjiang power grid in 2030 and 2035 is studied. The research results can provide reference for the development of new energy and energy storage power allocation in Xinjiang power grid.

Key words

pumped storage power station / electrochemical energy storage / new energy curtailment rate / production simulation

Cite this article

Download Citations
Xu FU , Yingyu WANG , Yujin ZHANG. Peak Regulating Demand and Energy Storage Power Supply Configuration of Xinjiang Power Grid[J]. Distributed Energy Resources. 2022, 7(5): 63-68 https://doi.org/10.16513/j.2096-2185.DE.2207509

References

[1]
夏屹,王继伟. 多能互补综合能源未来发展方向的探讨[J]. 电工技术2021(5): 1-2.
XIA Yi, WANG Jiwei. Discussion on the future development direction of multi-energy complementary comprehensive energy[J]. Electric Engineering, 2021(5): 1-2.
[2]
陈启鑫,康重庆,夏清. 碳捕集电厂的运行机制研究与调峰效益分析[J]. 中国电机工程学报2010, 30(7): 22-28.
CHEN Qixin KANG Chongqing XIA Qing. Operation mechanism and peak-load shaving effects of carbon-capture power plant[J]. Proceeding of the CSEE, 2010, 30(7): 22-28.
[3]
方陈,张宇,廖望,等. 区域能源互联网多能协同优化中的储能效益评估[J]. 电力建设2021, 42(5): 48-56.
FANG Chen, ZHANG Yu, LIAO Wang, et al. Benefit evaluation of energy storage in multi-energy collaborative optimization of regional Energy Internet[J]. Electric Power Construction, 2021, 42(5): 48-56.
[4]
张宁,周天睿,段长刚,等. 大规模风电场接入对电力系统调峰的影响[J]. 电网技术2010, 34(1): 152-158.
ZHANG Ning, ZHOU Tianrui, DUAN Changgang, et al. Impact of large-scale wind farm connecting with power grid on peak load regulation demand[J]. Power System Technology, 2010, 34(1): 152-158.
[5]
孙元章,吴俊,李国杰,等. 基于风速预测和随机规划的含风电场电力系统动态经济调度[J]. 中国电机工程学报2009, 29(4): 41-47.
SUN Yuanzhang, WU Jun, LI Guojie, et al. Dynamic economic dispatch considering wind power penetration based on wind speed forecasting and stochastic programming[J]. Proceeding of the CSEE, 2009, 29(4): 41-47.
[6]
刘斌,张玉琼,麻林巍,等. 西北地区源端基地综合能源系统的技术方案设计及优化研究[J]. 中国电机工程学报2021, 41(2): 568-580.
LIU Bin, ZHANG Yuqiong, MA Linwei, et al. Design and optimization of technical schemes of supply-side base integrated energy systems in Northwest China[J]. Proceeding of the CSEE, 2021, 41(2): 568-580.
[7]
杨冬锋,周苏荃,鲍锋. 风电并网系统低谷时段的调峰能力分析[J]. 电网技术2014, 38(6): 1446-1451.
YANG Dongfeng, ZHOU Suquan, BAO Feng. Analysis on peak load regulation capability of power grid integrated with wind farms in valley load period[J]. Power System Technology, 2014, 38(6): 1446-1451.
[8]
郭志忠,叶瑞丽,刘瑞叶,等. 含抽水蓄能电站的可再生能源电网优化调度策略[J]. 电力自动化设备2018, 38(3): 7-15.
GUO Zhizhong, YE Ruili, LIU Ruiye, et al. Optimal scheduling strategy for renewable energy system with pumped storage station[J]. Electric Power Automation Equipment, 2018, 38(3): 7-15.
[9]
胡泽春,丁华杰,孔涛. 风电—抽水蓄能联合日运行优化调度模型[J]. 电力系统自动化2012, 36(2): 36-41.
HU Zechun, DING Huajie, KONG Tao. A joint daily operational optimization model for wind power and pumped-storage plant[J]. Automation of Electric Power Systems, 2012, 36(2): 36-41.
[10]
徐飞,陈磊,金和平,等. 抽水蓄能电站与风电的联合优化运行建模及应用分析[J]. 电力系统自动化2013, 37(1): 149-154.
XU Fei, CHEN Lei, JIN Heping, et al. Modeling and application analysis of optimal joint operation of pumped storage power station and wind power [J]. Automation of Electric Power Systems, 2013, 37(1): 149-154.
[11]
金虹,衣进. 当前储能市场和储能经济性分析[J]. 储能科学与技术2012, 1(2): 103-111.
JIN Hong, YI Jin. Analysis of the current energy storage market and energy storage economy[J]. Energy Storage Science and Technology, 2012, 1(2): 103-111.
[12]
杨裕生,程杰,曹高萍. 规模储能装置经济效益的判据[J]. 电池2011, 41(1): 19-21.
YANG Yusheng, CHENG Jie, CAO Gaoping. A gauge for direct economic benefits of energy storage devices[J]. Battery, 2011, 41(1): 19-21.
[13]
李铁,李正文,杨俊友,等. 计及调峰主动性的风光水火储多能系统互补协调优化调度[J]. 电网技术2020, 44(10): 3622-3630.
LI Tie, LI Zhengwen, YANG Junyou, et al. Coordination and optimal scheduling of multi-energy complementary system considering peak regulation initiative[J]. Power System Technology, 2020, 44(10): 3622-3630.
[14]
郑乐,胡伟,陆秋瑜,等. 储能系统用于提高风电接入的规划和运行综合优化模型[J]. 中国电机工程学报2014, 34(16): 2533-2543.
ZHENG Le, HU Wei, LU Qiuyu, et al. Research on planning and operation model for energy storage system to optimize wind power integration[J]. Proceedings of the CSEE, 2014, 34(16): 2533-2543.
[15]
ZHANG N, LU X, MCELROY M B, et al. Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage[J]. Applied Energy, 2016, 184: 987-994.
[16]
陈兵,徐瑞,徐春雷,等. 规模化储能分区聚合有功调度控制技术研究[J]. 电力工程技术2021, 40(3): 35-41.
CHEN Bing, XU Rui, XU Chunlei, et al. Large-scale energy storage aggregation active power dispatching and control in subarea division of power grid[J]. Electric Power Engineering Technology, 2021, 40(3): 35-41.
[17]
张鹏,刘继春,吕林,等. 基于风蓄协调的节能调度方法[J]. 电力系统保护与控制2011, 39(2): 29-34.
ZHANG Peng, LIU Jichun, LU Lin, et al. The energy-saving dispatch based on the coordination between pumped storage hydro and wind energy[J]. Power System Protection and Control, 2011, 39(2): 29-34.
[18]
傅旭,张雨津,李富春,等. 新疆电网光热发电效益评估[J]. 油气与新能源2021, 33(5): 39-43.
FU Xu, ZHANG Yujin, LI Fuchun, et al. Evaluation of the benefit of CSP in Xinjiang power grid[J]. Petroleum and New Energy, 2021, 33(5): 39-43.
[19]
邹金,赖旭,汪宁渤. 以减少电网弃风为目标的风电与抽水蓄能协调运行[J]. 电网技术2015, 39(9): 2472-2477.
ZOU Jin, LAI Xu, WANG Ningbo. Mitigation of wind curtailment by coordinating with pumped storage[J]. Power System Technology, 2015, 39(9): 2472-2477.
[20]
张刘冬,殷明慧,卜京,等. 基于成本效益分析的风电–抽水蓄能联合运行优化调度模型[J]. 电网技术2015, 39(12): 3386-3392.
ZHANG Liudong, YIN Minghui, BU Jing, et al. A joint optimal operation model of wind farms and pumped storage units based on cost-benefit analysis[J]. Power System Technology, 2015, 39(12): 3386-3392.
[21]
傅旭,李富春,杨攀峰. 青海电网规模化储能电站需求和效益研究[J]. 油气与新能源2021, 33(4): 43-47.
FU Xu, LI Fuchun, YANG Panfeng. Study on demand and benefit of large-scale energy storage power station in Qinghai power grid[J]. Petroleum and New Energy, 2021, 33(4): 43-47.
[22]
李富春,赵延芳,傅旭,等. 青海天然气发电与新能源融合发展探讨[J]. 油气与新能源2021, 33(3): 6-10, 32.
LI Fuchun, ZHAO Tingfang, FU Xu, et al. Discussion on integrated development of natural gas power generation and new energy in Qinghai[J]. Petroleum and New Energy, 2021, 33(3): 6-10, 32.
[23]
傅旭,张雨津. 基于全生命周期的陕西电网电化学储能效益评估[J]. 油气与新能源2021, 33(6): 46-51.
FU Xu, ZHANG Yujin. Benefit evaluation of electrochemical energy storage in Shaanxi Power grid based on the whole life cycle[J]. Petroleum and New Energy, 2021, 33(6): 46-51.
[24]
傅旭,严欢,李富春,等. 储能电站对电网购电特性的影响研究[J]. 电力工程技术2020, 39(6): 98-103.
FU Xu, YAN Huan, LI Fuchun, et al. Influence of energy storage power station on the power purchase characteristics of power grid[J]. Electric Power Engineering Technology, 2020, 39(6): 98-103.
[25]
孙诚斌,李兆伟,李碧君,等. 电化学储能参与电网低频第三道防线的控制策略[J]. 电力工程技术2021, 40(3): 27-34.
SUN Chengbin, LI Zhaowei, LI Bijun, et al. A control strategy for the low frequency third defense line of power grid containing the electrochemical energy storage[J]. Electric Power Engineering Technology, 2021, 40(3): 27-34.
[26]
宋天昊,李柯江,韩肖清,等. 储能系统参与多应用场景的协同运行策略[J]. 电力系统自动化2021, 45(19): 43-51.
SONG Tianhao, LI Kejiang, HAN Xiaoqing, et al. Coordinated operation strategy of energy storage system participating in multiple application scenarios[J]. Automation of Electric Power Systems, 2021, 45(19): 43-51.
[27]
傅旭,李富春,刘飞,等. 高比例新能源系统储能需求优化研究[J]. 电力需求侧管理2020, 22(6): 26-32.
FU Xu, LI Fuchun, LIU Fei, et al. Research on energy storage demand optimization of high proportion new energy system[J]. Power Demand Side Management, 2020, 22(6): 26-32.
[28]
傅旭,杨欣,汪莹,等. 光热电站容量效益评估及影响因素研究[J]. 电力工程技术2021, 40(3): 186-192.
FU Xu, YANG Xin, WANG Ying, et al. The capacity benefit evaluation of CSP power station and its influencing factors[J]. Electric Power Engineering Technology, 2021, 40 (3): 186-192.
[29]
孙沛,傅旭,李富春,等. 含有电加热装置的光热机组运行策略研究[J]. 智慧电力2018, 46(3): 38-43.
SUN Pei, FU Xu, LI Fuchun, et al. Study on operation strategy of concentrating solar power plant with electric heating device[J]. Smart Power, 2018, 46(3): 38-43.
[30]
傅旭. 一种新的多省区电网协调运行生产模拟方法[J]. 电力自动化设备2020, 40(12): 166-174.
FU Xu. A new production simulation method for coordinated operation of multi-provincial power grid[J]. Electric Power Automation Equipment, 2020, 40(12): 166-174.
PDF(1111 KB)

Accesses

Citation

Detail

Sections
Recommended

/