Energy Sharing Model of Virtual Power Plant Considering the Lifetime Cost of Energy Storage

ZHAO Zeming,LIU Min

Distributed Energy ›› 2022, Vol. 7 ›› Issue (6) : 21-29.

PDF(1407 KB)
PDF(1407 KB)
Distributed Energy ›› 2022, Vol. 7 ›› Issue (6) : 21-29. DOI: 10.16513/j.2096-2185.DE.2207603
Basic Research

Energy Sharing Model of Virtual Power Plant Considering the Lifetime Cost of Energy Storage

Author information +
History +

Abstract

In recent years, the large number of distributed energy sources connected to the grid has posed a great challenge to the flexibility of the power system, and the application of sharing economy to the trading of distributed energy sources can provide additional flexibility to the power system. This paper proposes a energy sharing model of virtual power plant considering battery energy storage, and establishes a master-slave game model with the virtual power plant sharing operator as the dominant player, and the producers and consumers of distributed energy and loads as the followers. The virtual power plant sharing operator aims at maximizing its own benefits to set the shared tariff, and the generators and consumers optimize their own electricity consumption according to the shared tariff. In addition, the model considers the impact of battery storage on virtual power plant energy sharing, and models its average lifetime cost into short-term costs associated with real-time operation. Finally, the simulations show that the virtual power plant sharing operator can increase its own revenue through energy sharing, it can also increase the benefits to the generators and consumers, and battery storage can reduce the burden on the grid and bring some revenue to the virtual power plant under the time-sharing tariff mechanism.

Key words

virtual power plant / prosumer / energy sharing / master-slave game / distributed energy / storage lifetime cost

Cite this article

Download Citations
Zeming ZHAO , Min LIU. Energy Sharing Model of Virtual Power Plant Considering the Lifetime Cost of Energy Storage[J]. Distributed Energy Resources. 2022, 7(6): 21-29 https://doi.org/10.16513/j.2096-2185.DE.2207603

References

[1]
胡鹏飞,朱乃璇,江道灼,等. 柔性互联智能配电网关键技术研究进展与展望[J]. 电力系统自动化2021, 45(8): 2-12.
HU Pengfei, ZHU Naixuan, JIANG Daozhuo et al. Research progress and outlook on key technologies for flexible interconnected smart distribution networks[J]. Automation of Electric Power Systems, 2021, 45(8): 2-12.
[2]
张虹,闫贺,申鑫,等. 面向能源社区能量管理的配网产消者分布式优化调度[J]. 中国电机工程学报2022, 42(12): 4449-4459.
ZHANG Hong, YAN He, SHEN Xin, et al. Distributed optimal scheduling of distribution network producers and consumers for energy management of energy communities[J]. Proceedings of the CSEE, 2022, 42(12): 4449-4459.
[3]
刘一谷,高仕斌,韦晓广,等. 电力物联网下考虑社会行为的产消者交易模型研究[J]. 中国电机工程学报2021, 41(9): 3173-3187.
LIU Yigu, GAO Shibin, WEI Xiaoguang, et al. Research on producer-consumer transaction model considering social behavior under the internet of electricity things[J]. Proceedings of the CSEE, 2021, 41(9): 3173-3187.
[4]
林毓军,苗世洪,杨炜晨,等. 面向多重不确定性环境的虚拟电厂日前优化调度策略[J]. 电力自动化设备2021, 41(12): 143-150.
LIN Yujun, MIAO Shihong, YANG Weichen, et al. Optimal scheduling strategy of virtual power plant day before for multiple uncertainty environment[J]. Electric Power Automation Equipment, 2021, 41(12): 143-150.
[5]
田立亭,程林,郭剑波,等. 虚拟电厂对分布式能源的管理和互动机制研究综述[J]. 电网技术2020, 44(6): 2097-2108.
TIAN Liting, CHENG Lin, GUO Jianbo, et al. A review of research on the management and interaction mechanisms of virtual power plants for distributed energy sources[J]. Power System Technology, 2020, 44(6): 2097-2108.
[6]
陈张宇,刘东,刘浩文,等. 基于精细化需求响应的虚拟电厂优化调度[J]. 电网技术2021, 45(7): 2542-2550.
CHEN Zhangyu, LIU Dong, LIU Haowen, et al. Optimal scheduling of virtual power plants based on refined demand response[J]. Power System Technology, 2021, 45(7): 2542-2550.
[7]
杨洪朝,杨 迪,孟 科. 高比例可再生能源渗透下多虚拟电厂多时间尺度协调优化调度[J]. 智慧电力2021, 49(2): 60-68.
YANG Hongzhao, YANG Di, MENG Ke. Multi-time scale coordination optimal scheduling of multiple virtual power plants with high-penetration renewable energy integration[J]. Smart Power, 2021, 49(2): 60-68.
[8]
张巍,卢骧. 点对点交易下储能聚合商共享自营多模式交易模型[J]. 电力系统自动化2022, 46(2): 15-23.
ZHANG Wei, LU Qiang. A multi-modal trading model for energy storage aggregators' shared ownership under peer-to-peer trading[J]. Automation of Electric Power Systems, 2022, 46(2): 15-23.
[9]
吴小汉,张谦,粟尧嘉,等. 基于区块链的私有充电桩共享平台交易策略[J]. 发电技术2022, 43(3): 439-451.
WU Xiaohan, ZHANG Qian, SU Yaojia, et al. Sharing platform trading strategy of private charging pile based on blockchain[J]. Power Generation Technology, 2022, 43(3): 439-451.
[10]
陈玥,刘锋,魏韡,等. 需求侧能量共享:概念、机制与展望[J]. 电力系统自动化2021, 45(2): 1-11.
CHEN Yue, LIU Feng, WEI Wei et al. Demand-side energy sharing: Concepts, mechanisms and perspectives [J]. Automation of Electric Power Systems, 2021, 45(2): 1-11.
[11]
王怡,王小君,孙庆凯,等. 基于能量共享的综合能源系统群多主体实时协同优化策略[J]. 电力系统自动化2022, 46(4): 56-65.
WANG Yi, WANG Xiaojun, SUN Qingkai, et al. Real-time collaborative optimization strategy based on energy sharing for integrated energy system cluster with multiple subjects[J]. Automation of Electric Power Systems, 2022, 46(4): 56-65.
[12]
CHEN Y, MEI S, ZHOU F, et al. An energy sharing game with generalized demand bidding: Model and properties[J]. IEEE Transactions on Smart Grid, 2020, 11(3): 2055-2066.
[13]
HU J, WU J, AI X, et al. Coordinated energy management of prosumers in a distribution system considering network congestion[J]. IEEE Transactions on Smart Grid, 2021, 12(1): 468-478.
[14]
庞传军,刘金波,张波,等. 基于Shapley值的电力负荷预测结果溯源分析方法[J]. 电力自动化设备2021, 41(12): 200-205.
PANG Chuanjun, LIU Jinbo, ZHANG Bo, et al. Traceability analysis method of power load forecasting results based on Shapley value[J]. Electric Power Automation Equipment, 2021, 41(12): 200-205.
[15]
段佳南,谢俊,冯丽娜,等. 基于合作博弈论的风-光-水-氢多主体能源系统增益分配策略[J]. 电网技术2022, 46(5): 1703-1712.
DUAN Jianan, XIE Jun, FENG Lina et al. Gain allocation strategy of wind-light-water-hydrogen multi-subject energy system based on cooperative game theory[J]. Power System Technology, 2022, 46(5): 1703-1712.
[16]
唐家俊,吴晓刚,张思,等. 基于Gale-Shapley算法的虚拟电厂与分布式资源匹配机制[J]. 电力系统自动化2022, 46(18): 65-73.
TANG Jiajun, WU Xiaogang, ZHANG Si, et al. Virtual power plant and distributed resource matching mechanism based on Gale-Shapley algorithm[J]. Automation of Electric Power Systems, 2022, 46(18): 65-73.
[17]
王欣,谢文华,张利君. 增量配电网多主体投资收益分配研究:基于AHP-VPP-SOA-Shapley模型的分析[J]. 价格理论与实践2021(11): 102-105, 197.
WANG Xin, XIE Wenhua, ZHANG Lijun. Research on the allocation of investment income of multiple subjects in incremental distribution grid: An analysis based on AHP-SPA-Shapley model[J]. Price Theory & Practice, 2021(11): 102-105, 197.
[18]
周军,李佳旺,马鸿君,等. 考虑点对点电能共享的智能楼宇群分布式优化调度[J]. 电力自动化设备2021, 41(10): 113-121.
ZHOU Jun, LI Jiawang, MA Hongjun, et al. Distributed optimal scheduling of intelligent building groups considering point-to-point power sharing[J]. Electric Power Automation Equipment, 2021, 41(10): 113-121.
[19]
LIU N, CHENG M, YU X, et al. Energy-sharing provider for PV prosumer clusters: A hybrid approach using stochastic programming and stackelberg game[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6740-6750.
[20]
WANG Z. Distributed generalized Nash equilibrium seeking for energy sharing games in prosumers[J]. IEEE Transactions on Power Systems, 2021, 36(5): 3973-3986.
[21]
匡熠,王秀丽,王建学,等. 基于Stackelberg博弈的虚拟电厂能源共享机制[J]. 电网技术2020, 44(12): 4556-4564.
KUANG Yi, WANG Xiuli, WANG Jianxue, et al. A virtual power plant energy sharing mechanism based on Stackelberg game[J]. Power System Technology, 2020, 44(12): 4556-4564.
[22]
HE L, ZHANG J. A community sharing market with PV and energy storage: An adaptive bidding-based double-side auction mechnism[J]. IEEE Transactions on Smart Grid, 2021, 12(3): 2450-2461.
[23]
LIU N, TAN L, SUN H, et al. Bilevel heat-electricity energy sharing for integrated energy systems with energy hubs and prosumers[J]. IEEE Transactions on Industrial Informatics, 2022, 18(6): 3754-3765.
[24]
JU C, WANG P, GOEL L, et al. A two-layer energy management system for microgrids with hybrid energy storage considering degradation costs[J]. IEEE Transactions on Smart Grid, 2018, 9(6): 6047-6057.
[25]
HUANG Y, ZHANG Q, KANG M. Energy scheduling framework of micro-grids considering battery lifetime[J]. IEEE Access, 2022, 10: 25016-25024.

Funding

Science and Technology Program of Guizhou Province(黔科合支撑[2021]一般409)
PDF(1407 KB)

Accesses

Citation

Detail

Sections
Recommended

/