Combined Heat and Power Optimization for Virtual Power Plants Considering Carbon Capture Technologies

ZHAO Zeming,LIU Min

Distributed Energy ›› 2023, Vol. 8 ›› Issue (1) : 30-38.

PDF(1782 KB)
PDF(1782 KB)
Distributed Energy ›› 2023, Vol. 8 ›› Issue (1) : 30-38. DOI: 10.16513/j.2096-2185.DE.2308104
Basic Research

Combined Heat and Power Optimization for Virtual Power Plants Considering Carbon Capture Technologies

Author information +
History +

Abstract

As a key technology for low carbon transformation of power system, carbon capture technology applied to combined heat and power system can reduce carbon emissions of virtual power plants. To this end, a technical route that applies carbon capture technology to the combined heat and power optimization of virtual power plants is proposed to promote their low carbon economic operation. On the one hand, it relies on the ladder carbon trading mechanism, demand response and power-heat interconversion to reduce the carbon emissions of combined heat and power operation of the virtual power plant; On the other hand, it aims to minimize the operating cost of the virtual power plant, taking into account the internal constraints of the virtual power plant such as load regulation potential and the upper limit of new energy output, as well as the physical constraints of power-heat-carbon interconversion to improve the operating economy of the virtual power plant. Based on the actual operating data of a park, a control scenario is designed around whether to configure carbon capture technology and demand response, and the proposed virtual power plant combined heat and power optimization model is verified to have certain realistic availability and robustness.

Key words

virtual power plant / carbon capture technology / combined heat and power optimization / low carbon economy / demand response / carbon trading mechanism

Cite this article

Download Citations
Zeming ZHAO , Min LIU. Combined Heat and Power Optimization for Virtual Power Plants Considering Carbon Capture Technologies[J]. Distributed Energy Resources. 2023, 8(1): 30-38 https://doi.org/10.16513/j.2096-2185.DE.2308104

References

[1]
李政,陈思源,董文娟,等. 碳约束条件下电力行业低碳转型路径研究[J]. 中国电机工程学报2021, 41(12): 3987-4001.
LI Zheng, CHEN Siyuan, DONG Wenjuan, et al. Research on low-carbon transformation path of power industry under carbon constraints[J]. Proceedings of the CSEE, 2021, 41(12): 3987-4001.
[2]
李家熙,王丹,贾宏杰,等. 面向可再生能源接入的综合能源系统熵态机理和分析方法[J/OL]. 电力系统自动化:1-22[2023-01-09].
LI Jiaxi, WANG Dan, JIA Hongjie, et al. Entropy mechanism and analysis method of integrated energy system for renewable energy access[J/OL]. Automation of Electric Power Systems: 1-22[2023-01-09].
[3]
董彧彤,王艳松,倪承波,等. 计及用热舒适度弹性的热电联合优化调度[J]. 电力系统保护与控制2021, 49(23): 26-34.
DONG Yutong, WANG Yansong, NI Chengbo, et al. Dispatch of a combined heat-power system considering elasticity with thermal comfort[J]. Power System Protection and Control, 2021, 49(23): 26-34.
[4]
王宣元,刘敦楠,刘蓁,等. 泛在电力物联网下虚拟电厂运营机制及关键技术[J]. 电网技术2019, 43(9): 3175-3183.
WANG Xuanyuan, LIU Dunnan, LIU Hao, et al. Operation mechanism and key technology of virtual power plant under ubiquitous power internet of things[J]. Power System Technology, 2019, 43(9): 3175-3183.
[5]
宣文博,李慧,刘忠义,等. 一种基于虚拟电厂技术的城市可再生能源消纳能力提升方法[J]. 发电技术2021, 42(3): 289-297.
XUAN Wenbo, LI Hui, LIU Zhongyi, et al. A method for improving the accommodating capability of urban renewable energy based on virtual power plant technology[J]. Power Generation Technology, 2021, 42(3): 289-297.
[6]
杨洪朝,杨迪,孟科. 高比例可再生能源渗透下多虚拟电厂多时间尺度协调优化调度[J]. 智慧电力2021, 49(2): 60-68.
YANG Hongzhao, YANG Di, MENG Ke. Multi-time scale coordination optimal scheduling of multiple virtual power plants with high-penetration renewable energy integration[J]. Smart Power, 2021, 49(2): 60-68.
[7]
袁桂丽,钟飞,张睿,等. 考虑碳捕集及需求响应的虚拟电厂热电联合优化调度[J/OL]. 电网技术:1-9[2023-01-09].
YUAN Guili, ZHONG Fei, ZHANG Rui, et al. Joint optimization dispatch of thermopower in virtual power plants considering carbon capture and demand response[J/OL]. Power System Technology: 1-9[2023-01-09].
[8]
陈锦鹏,胡志坚,陈嘉滨,等. 考虑阶梯式碳交易与供需灵活双响应的综合能源系统优化调度[J]. 高电压技术2021, 47(9): 3094-3106.
CHEN Jinpeng, HU Zhijian, CHEN Jiabin, et al. Optimal dispatch of integrated energy system considering stepped carbon trading and flexible response of supply and demand[J]. High Voltage Engineering, 2021, 47(9): 3094-3106.
[9]
陈锦鹏,胡志坚,陈颖光,等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备2021, 41(9): 48-55.
CHEN Jinpeng, HU Zhijian, CHEN Yingguang, et al. Thermoelectric optimization of integrated energy system considering stepped carbon trading mechanism and electricity to hydrogen[J]. Electric Power Automation Equipment, 2021, 41(9): 48-55.
[10]
崔杨,曾鹏,仲悟之,等. 考虑阶梯式碳交易的电气热综合能源系统低碳经济调度[J]. 电力自动化设备2021, 41(3): 10-17.
CUI Yang, ZENG Peng, ZHONG Wuzhi, et al. Low-carbon economic dispatch of electricity-gas-heat integrated energy system considering stepped carbon trading[J]. Electric Power Automation Equipment, 2021, 41(3): 10-17.
[11]
崔杨,邓贵波,赵钰婷,等. 考虑源荷低碳特性互补的含风电电力系统经济调度[J]. 中国电机工程学报2021, 41(14): 4799-4815.
CUI Yang, DENG Guibo, ZHAO Yuting, et al. Economic dispatch of wind power system considering the complementary characteristics of source-load and low-carbon characteristics[J]. Proceedings of the CSEE, 2021, 41(14): 4799-4815.
[12]
LI Y, HAN M, YANG Z, et al. Coordinating flexible demand response and renewable uncertainties for scheduling of community integrated energy systems with an electric vehicle charging station: A bi-level approach[J]. IEEE Transactions on Sustainable Energy, 2021, 12(4): 2321-2331.
[13]
张晓辉,刘小琰,钟嘉庆. 考虑奖惩阶梯型碳交易和电热转移负荷不确定性的综合能源系统规划[J]. 中国电机工程学报2020, 40(19): 6132-6142.
ZHANG Xiaohui, LIU Xiaoyan, ZHONG Jiaqing. Comprehensive energy system planning considering the uncertainty of incentive and punishment stepped carbon trading and electricity-heat transfer load[J]. Proceedings of the CSEE, 2020, 40(19): 6132-6142.
[14]
郭静蓉,向月,吴佳婕,等. 考虑CCUS电转气技术及碳市场风险的电气综合能源系统低碳调度[J/OL]. 中国电机工程学报:1-13[2023-01-09].
GUO Jingrong, XIANG Yue, WU Jiajie, et al. Low-carbon dispatch of integrated electricity-gas energy system considering CCUS power-to-gas technology and carbon market risk[J/OL]. Proceedings of the CSEE: 1-13[2023-01-09].
[15]
袁桂丽,刘骅骐,禹建芳,等. 含碳捕集热电机组的虚拟电厂热电联合优化调度[J]. 中国电机工程学报2022, 42(12): 4440-4449.
YUAN Guili, LIU Huaqi, YU Jianfang, et al. Optimized dispatch of virtual power plant thermoelectric joint optimization of carbon-containing heat capture heat power units[J]. Proceedings of the CSEE, 2022, 42(12): 4440-4449.
[16]
GUO Xusheng, LOU Suhua, YAO Wu, et al. Low-carbon operation of combined heat and power integrated plants based on solar-assisted carbon capture[J]. Journal of Modern Power Systems and Clean Energy, 2022, 10(5): 1138-1151.
[17]
田丰,贾燕冰,任海泉,等. 考虑碳捕集系统的综合能源系统“源荷”低碳经济调度[J]. 电网技术2020, 44(9): 3346-3355.
TIAN Feng, JIA Yanbing, REN Haiquan, et al. “Source-load” low-carbon economic dispatch of integrated energy system considering carbon capture system[J]. Power System Technology, 2020, 44(9): 3346-3355.

Funding

Science and Technology Program of Guizhou Province(黔科合支撑[2021]一般409)
PDF(1782 KB)

Accesses

Citation

Detail

Sections
Recommended

/