Variable Order Fractional-Order Sliding Mode Control of Boost Converters in DC Microgrid

WANG Haohan,WU Chaojun

Distributed Energy ›› 2023, Vol. 8 ›› Issue (1) : 49-56.

PDF(5545 KB)
PDF(5545 KB)
Distributed Energy ›› 2023, Vol. 8 ›› Issue (1) : 49-56. DOI: 10.16513/j.2096-2185.DE.2308106
Application Technology

Variable Order Fractional-Order Sliding Mode Control of Boost Converters in DC Microgrid

Author information +
History +

Abstract

To solve the problem of frequent fluctuations on the load side of power electronic Boost converter in DC microgrid, a novel variable order fractional-order non-singular terminal sliding mode control strategy (VO-FNTSMC) is designed to accurately and quickly respond to the disturbance. The control effect of the control strategy in the start-up phase and load change phase of the Boost converter is studied. The research results are experimentally verified by hardware in loop (HiL) method on the NI PXie-ModelingTech experimental platform. The results show that the general fractional control strategy has the advantages of smaller chattering and output error when the order of fractional calculus is 1; When the order is 1.4, it has the advantages of small overshoot and fast response. VO-FNTSMC integrates the advantages of the above two orders of fractional control, and has faster response speed, smaller overshoot, steady-state error and sliding mode chatter to the output voltage in the start-up stage and load change stage, and it has the advantage of fractional controller in different order regulation effect. It provides a deep research method of variable order for the application of fractional order control theory in the field of new energy power electronics.

Key words

fractional calculus / variable order fusion / nonlinear sliding mode control / DC microgrid / Boost converter

Cite this article

Download Citations
Haohan WANG , Chaojun WU. Variable Order Fractional-Order Sliding Mode Control of Boost Converters in DC Microgrid[J]. Distributed Energy Resources. 2023, 8(1): 49-56 https://doi.org/10.16513/j.2096-2185.DE.2308106

References

[1]
杨新法,苏剑,吕志鹏,等. 微电网技术综述[J]. 中国电机工程学报2014, 34(1): 57-70.
YANG Xinfa, SU Jian, LYU Zhipeng, et al. Overview on micro-grid technology[J]. Proceedings of the CSEE, 2014, 34(1): 57-70.
[2]
孙黎霞,鞠平,白景涛,等. 计及蓄电池寿命的冷热电联供型微电网多目标经济优化运行[J]. 发电技术2020, 41(1): 64-72.
SUN Lixia, JU Ping, BAI Jingtao, et al. Multi-objective economic optimal operation of microgrid based on combined cooling, heating and power considering battery life[J]. Power Generation Technology, 2020, 41(1): 64-72.
[3]
毛亚哲,何柏娜,王德顺,等. 基于改进深度强化学习的智能微电网群控制优化方法[J]. 智慧电力2021, 49(3): 19-25.
MAO Yazhe, HE Baina, WANG Deshun, et al. Optimization method for smart multi-microgrid control based on improved deep reinforcement learning[J]. Smart Power, 2021, 49(3): 19-25.
[4]
李霞林,王成山,郭力,等. 直流微电网稳定控制关键技术研究综述[J]. 供用电2015, 32(10): 1-14.
LI Xialin, WANG Chengshan, GUO Li, et al. A review on the key stability control technologies of DC microgrid[J]. Distribution & Utilization, 2015, 32(10): 1-14.
[5]
张纯江,暴云飞,孟宪慧,等. 直流微网储能DC/DC变换器的自适应虚拟直流电机控制[J]. 电力系统保护与控制2023, 51(1): 12-20.
ZHANG Chunjiang, BAO Yunfei, MENG Xianhui, et al. Adaptive virtual DC machine control for a DC microgrid energy storage DC/DC converter[J]. Power System Protection and Control, 2023, 51(1): 12-20.
[6]
张国驹,唐西胜,周龙,等. 基于互补PWM控制的Buck/Boost双向变换器在超级电容器储能中的应用[J]. 中国电机工程学报2011, 31(6): 15-21.
ZHANG Guoju, TANG Xisheng, ZHOU Long, et al. Research on complementary PWM controlled Buck/Boost bi-directional converter in supercapacitor energy storage[J]. Proceedings of the CSEE, 2011, 31(6): 15-21.
[7]
OLDHAM K B, SPANIER J. The fractional calculus[M]. New York: Academic Press, 1974: 15-26.
[8]
SUN H G, ZHANG Y, BALEANU D, et al. A new collection of real world applications of fractional calculus in science and engineering[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 64: 213-231.
[9]
HERNÁNDEZ-BALAGUERA E. Coulostatics in bioelectro-chemistry: A physical interpretation of the electrode-tissue processes from the theory of fractional calculus[J]. Chaos, Solitons & Fractals, 2021, 145: 110787.
[10]
BURLON A, ALOTTA G, DI PAOLA M, et al. An original perspective on variable-order fractional operators for viscoelastic materials[J]. Meccanica, 2021, 56(4): 769-784.
[11]
LIU T, MOU J, BANERJEE S, et al. A new fractional-order discrete BVP oscillator model with coexisting chaos and hyperchaos[J]. Nonlinear Dynamics, 2021, 106(1): 1011-1026.
[12]
WARRIER P, SHAH P. Fractional order control of power electronic converters in industrial drives and renewable energy systems: A review[J]. IEEE Access, 2021, 9: 58982-59009.
[13]
YANG C, XIE F, CHEN Y, et al. Modeling and analysis of the fractional-order flyback converter in continuous conduction mode by caputo fractional calculus[J]. Electronics, 2020, 9(9): 1544.
[14]
SHARMA M, RAJPUROHIT B S, AGNIHOTRI S, et al. Development of fractional order modeling of voltage source converters[J]. IEEE Access, 2020, 8: 131750-131759.
[15]
BUENO-LOPEZ M, GIRALDO E. Real-time fractional order PI for embedded control of a synchronous Buck converter[J]. Engineering Letters, 2021, 29(3): 1017-1029.
[16]
BABES B, MEKHILEF S, BOUTAGHANE A, et al. Fuzzy approximation-based fractional-order nonsingular terminal sliding mode controller for DC-DC Buck converters[J]. IEEE Transactions on Power Electronics, 2021, 37(3): 2749-2760.
[17]
NOON J. A power hardware-in-the-loop testbench for aerospace applications[C]//IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans Ernest N. Morial Convention Center, United States: IEEE, 2020: 2884-2891.
[18]
KHOOBAN M H. Hardware-in-the-loop simulation for the analyzing of smart speed control in highly nonlinear hybrid electric vehicle[J]. Transactions of the Institute of Measurement and Control, 2019, 41(2): 458-467.
[19]
Podlubny I. Fractional differential equations[M]. New York: Academic Press, 1999: 62-75.

Funding

Natural Science Basic Research Program of Shaanxi Province(2021JM-449)
PDF(5545 KB)

Accesses

Citation

Detail

Sections
Recommended

/