Improved Control Strategy of Multi Virtual Synchronous Generators Parallel System

SHI Kai,ZHAO Bangbang,XU Peifeng,SUN Yuxin,REN Mingwei

Distributed Energy ›› 2023, Vol. 8 ›› Issue (2) : 11-18.

PDF(1923 KB)
PDF(1923 KB)
Distributed Energy ›› 2023, Vol. 8 ›› Issue (2) : 11-18. DOI: 10.16513/j.2096-2185.DE.2308202
Basic Research

Improved Control Strategy of Multi Virtual Synchronous Generators Parallel System

Author information +
History +

Abstract

Aiming at the existence of circulation and nonproportional power distribution in the parallel system with multiple virtual synchronous generators (VSGs), an improved power distribution strategy is proposed. Firstly, the parallel pre-synchronization strategy is improved by adding frequency compensation to the active loop to smoothly and steadily integrate the machine into the system and reduce the power oscillation caused by the instantaneous current shock of the parallel connection. Secondly, through the circulation analysis, it is proposed to add voltage compensation to the reactive loop of each VSG, which can guarantee the same output voltage of each VSG, suppress the system circulation, and improve the power distribution accuracy. The correctness of the control strategy is verified through small signal analysis. Finally, the relationship between VSG parameters and proportional power distribution is analyzed. A model of three VSGs in parallel is built in Matlab/Simulink to verify the feasibility of the proposed control strategy, which enables the power to be distributed according to different capacity ratios, and can still operate stably in the face of sudden load changes.

Key words

parallel virtual synchronous generator (VSG) / circulating current / pre-synchronization / power allocation

Cite this article

Download Citations
Kai SHI , Bangbang ZHAO , Peifeng XU , et al . Improved Control Strategy of Multi Virtual Synchronous Generators Parallel System[J]. Distributed Energy Resources. 2023, 8(2): 11-18 https://doi.org/10.16513/j.2096-2185.DE.2308202

References

[1]
苏萌. 分布式发电技术在电力系统中的应用综述[J]. 价值工程2019, 38(27): 227-228.
SU Meng. Summary of application of distributed power generation technology in power system[J]. Value Engineering, 2019, 38(27): 227-228.
[2]
贺红军. 新能源发电和分布式发电对电力系统的影响分析[J]. 光源与照明2022(8): 159-161.
HE Hongjun. Influence analysis of new energy generation and distributed generation on power system [J]. Lamps & Lighting, 2022(8): 159-161.
[3]
马红明,刘林青,谢海鹏,等. 计及综合需求响应的电-热综合能源系统分布式光伏最大接入容量评估[J]. 智慧电力2021, 49(8): 23-30.
MA Hongming, LIU Linqing, XIE Haipeng, et al. Maximum access capacity assessment of distributed photovoltaic in integrated electric-thermal energy system considering integrated demand response[J]. Smart Power, 2021, 49(8): 23-30.
[4]
田越,高强. 微电网改进下垂控制策略研究[J]. 科技风2021(9): 194-196.
TIAN Yue, GAO Qiang. Research on improved droop control strategy for microgrid[J]. Science and Technology Wind, 2021(9): 194-196.
[5]
李靖,王志和,倪浩. 基于改进下垂控制的直流微网运行研究[J]. 发电技术2021, 42(6): 765-774.
LI Jing, WANG Zhihe, NI Hao. Research on DC microgrid operation based on improved droop control[J]. Power Generation Technology, 2021, 42(6): 765-774.
[6]
王晓声,江浩,刘辉,等. 虚拟同步发电机并网稳定性研究综述[J]. 华北电力技术2017(9): 14-21.
WANG Xiaosheng, JIANG Hao, LIU Hui, et al. Review of the research on stability of virtual synchronous generator under grid-connected operation[J]. North China Electric Power, 2017(9): 14-21.
[7]
罗达,张阳,廖无限. 虚拟同步发电机技术综述[J]. 湖南电力2020, 40(2): 8-14.
LUO Da, ZHANG Yang, LIAO Wuxian. Technical review of virtual synchronous generator technology[J]. Hunan Electric Power, 2020, 40(2): 8-14.
[8]
梁亦峰. 基于逆变器的虚拟同步发电机控制建模与仿真[J]. 机电工程技术2021, 50(3): 93-96.
LIANG Yifeng. Modeling and simulation of virtual synchronous generator based on inverter control[J]. Mechanical & Electrical Engineering Technology, 2021, 50(3): 93-96.
[9]
李天骄,尹常永. 虚拟同步发电机技术综述[J]. 沈阳工程学院学报:自然科学版2018, 14(4): 344-348.
LI Tianjiao, YIN Changyong. Overview of virtual synchronous generator technology[J]. Journal of Shenyang Institute of Engineering: Natural Science, 2018, 14(4): 344-348.
[10]
刘航,王跃,刘永慧,等. 基于定量设计虚拟阻抗的VSG低电压穿越策略[J]. 高电压技术2022, 48(1): 245-256.
LIU Hang, WANG Yue, LIU Yonghui, et al. The LVRT strategy for VSG based on the quantitatively designed virtual impedance[J]. High Voltage Engineering, 2022, 48 (1): 245-256.
[11]
刘子阳,江卫华,胡为兵. 虚拟同步发电机惯量和阻尼参数模糊自适应控制策略[J]. 电气应用2022, 41(9): 16-21.
LIU Ziyang, JIANG Weihua, HU Weibing. Fuzzy adaptive control strategy for inertia and damping parameters of virtual synchronous generator[J]. Electrotechnical Application, 2022, 41(9): 16-21.
[12]
霍现旭,吴盼,黄鑫,等. 基于自适应参数虚拟同步机的微电网稳定控制[J]. 电力建设2019, 40(2): 79-86.
HUO Xianxu, WU Pan, HUANG Xin, et al. Research on stability control of microgrid applying virtual synchronous generator with adaptive parameters[J]. Electric Power Construction, 2019, 40(2): 79-86.
[13]
高子轩,赵晋斌,杨旭红,等. 基于RBF的VSG转动惯量和阻尼系数自适应控制策略[J]. 电力建设2022, 43(9): 132-139.
GAO Zixuan, ZHAO Jinbin, YANG Xuhong, et al. RBF-based adaptive control strategy of rotational inertia and damping coefficient for VSG[J]. Electric Power Construction, 2022, 43(9): 132-139.
[14]
曾德银,姚骏,张田,等. 虚拟同步发电机多机并联系统的频率小信号稳定性分析研究[J]. 中国电机工程学报2020, 40(7): 2048-2061, 2385.
ZENG Deyin, YAO Jun, ZHANG Tian, et al. Research on frequency small-signal stability analysis of multi-parallel virtual synchronous generator-based system[J]. Proceedings of the CSEE, 2020, 40 (7): 2048-2061, 2385.
[15]
MAHMOOD H, MICHAELSON D, JIANG J. Accurate reactive power sharing in an islanded microgrid using adaptive virtual impedances[J]. IEEE Transactions on Power Electronics, 2015, 30(3): 1605-1617.
[16]
SHAFIEE Q, GUERRERO J M, VASQUEZ J C. Distributed secondary control for islanded microgrids: A novel approachs[J]. IEEE Trans. Power Electronics, 2014, 29(2): 1018-1031.
[17]
温春雪,黄耀智,胡长斌,等. 虚拟同步发电机接口变换器并联运行虚拟阻抗自适应控制[J]. 电工技术学报2020, 35(): 494-502.
Abstract
S2
WEN Chunxue, HUANG Yaozhi, HU Changbin, et al. Adaptive control of virtual impedance in parallel operation of virtual synchronous generator interface converter[J]. Transactions of China Electrotechnical Society, 2020, 35(): 494-502.
S2
[18]
赵金鑫,苗虹,曾成碧. 基于改进虚拟同步发电机控制技术的低压微电网功率分配策略[J]. 电力建设2020, 41(7): 42-48.
ZHAO Jinxin, MIAO Hong, ZENG Chengbi. Microgrid power distribution strategy based on improved control strategy of virtual synchronous generator[J]. Electric Power Construction, 2020, 41(7): 42-48.
[19]
李斯琪,周游,杨帅帅. 基于虚拟同步发电机的多逆变器并联控制策略[J]. 电气开关2020, 58(4): 59-67.
LI Siqi, ZHOU You, YANG Shuaishuai. Multi-inverter parallel control strategy based on virtual synchronous generator [J]. Electric Switchgear, 2020, 58(4): 59-67.
[20]
ZHENG X, CAO H, LI H, et al. Multi-inverters pre-synchronization VSG control strategy for the microgrid system[C]//2019 IEEE 4th International Future Energy Electronics Conference (IFEEC). Singapore: IEEE, 2019: 1-5.
[21]
WU J, ZHOU F, ZHU C, et al. Parameters design of pre-synchronization for multiple virtual synchronous generator based microgrid[C]//2019 IEEE Applied Power Electronics Conference and Exposition (APEC). Anaheim, CA, USA: IEEE, 2019: 3184-3188.
[22]
高永军,孙向东,周兆吉. 基于虚拟阻抗功率的无锁相环并网预同步控制[J]. 电力电子技术2021, 55(4): 99-102.
GAO Yongjun, SUN Xiangdong, ZHOU Zhaoji. Grid-connected pre-synchronization control based on virtual impedance power without PLL[J]. Power Electronics, 2021, 55(4):99-102.

Funding

National Natural Science Foundation of China(52177045)
Jiangsu University Superiority Discipline Construction (Phase Ⅲ) Project(PAPD-2018-87)
PDF(1923 KB)

Accesses

Citation

Detail

Sections
Recommended

/