PDF(1323 KB)
Multi-Objective Optimal Scheduling Strategy for Microgrid With High Permeability Clean Energy
XU Zhongyang,SONG Xiaotong
Distributed Energy ›› 2023, Vol. 8 ›› Issue (2) : 19-25.
PDF(1323 KB)
PDF(1323 KB)
Multi-Objective Optimal Scheduling Strategy for Microgrid With High Permeability Clean Energy
The high proportion of wind-photovoltaic power supply connected to microgrid system introduces more uncertain factors, which brings challenges to the optimal dispatching of power grid. In order to improve the economic and environmental performance of the system, rationally allocate the installed capacity of the wind and photovoltaic units, and promote the consumption of the wind-photovoltaic energy, this paper establishes a high-proportion clean energy microgrid model, defines the economic and environmental objective functions, proposes a multi-objective optimal scheduling strategy, and uses particle swarm optimization algorithm to solve the problem. The influence of clean energy permeability on the economic and technical characteristics of microgrid and the consumption rate of clean energy is explored through the analysis of examples. With the increase of the permeability of clean energy, the absorption rate generally shows a downward trend, and there is a critical permeability value. Increasing the permeability within the critical range can effectively improve the comprehensive operation efficiency of microgrid. The results show that the proposed scheduling strategy is correct and effective, the algorithm convergence is reliable, and it can provide an important reference for the rational allocation of the installed capacity of wind and photovoltaic units.
high penetration / consumption rate / clean energy / microgrid / multi-objective optimal scheduling
| [1] |
孙宏斌,张璇,许嘉禾,等. 低碳智能人体电网:概念、架构和展望[J/OL]. 中国电机工程学报:1-13[2023-01-20]. https://doi.org/10.13334/j.0258-8013.pcsee.222960.
|
| [2] |
何平,李桂鑫. 清洁能源高比例接入与终端再电气化对城市电网的影响分析[J]. 电力系统及其自动化学报,2021, 33(6): 143-150.
|
| [3] |
|
| [4] |
|
| [5] |
韩肖清,李廷钧,张东霞,等. 双碳目标下的新型电力系统规划新问题及关键技术[J]. 高电压技术,2021, 47(9): 3036-3046.
|
| [6] |
姜红丽,刘羽茜,冯一铭,等. 碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J]. 发电技术,2022, 43(1): 54-64.
|
| [7] |
卢恒光,范欣辰. 考虑环境效益的微电网经济功率优化[J]. 电气技术,2022, 23(11): 56-61.
|
| [8] |
刘慧文,王生铁,刘广忱,等. 风光柴储微电网容量优化配置的运行策略[J]. 太阳能学报,2022, 43(9): 453-460.
|
| [9] |
姜海洋,杜尔顺,金晨,等. 高比例清洁能源并网的跨国互联电力系统多时间尺度储能容量优化规划[J]. 中国电机工程学报,2021, 41(6): 2101-2115.
|
| [10] |
申洪,周勤勇,刘耀,等. 碳中和背景下全球能源互联网构建的关键技术及展望[J]. 发电技术,2021, 42(1): 8-19.
|
| [11] |
孙伟卿,刘唯,裴亮,等. 高比例可再生能源背景下考虑储能系统价值的储-输多阶段联合规划[J]. 高电压技术,2021, 47(3): 983-993.
|
| [12] |
季宇,牛耕,曲雪原,等. 计及多能互补的海岛群微网系统规划评价方法[J]. 智慧电力,2021, 49(6): 24-31.
|
| [13] |
徐青山,李淋,蔡霁霖,等. 考虑电能交互的冷热电多微网系统日前优化经济调度[J]. 电力系统自动化,2018, 42(21): 36-44.
|
| [14] |
宋晓通,翁志鹏,周京华,等. 基于多态不确定性全时序仿真的微电网可靠性评估与规划[J]. 高电压技术,2020, 46(5): 1508-1517.
|
| [15] |
戚永志,黄越辉,王伟胜,等. 高比例清洁能源下水风光消纳能力分析方法研究[J]. 电网与清洁能源,2020, 36(1): 55-63.
|
| [16] |
王仕俊,薄怀师,王定刚,等. 计及风光消纳的能源互联系统经济优化[J]. 可再生能源,2019, 37(3): 411-417.
|
| [17] |
孙旻,张大,曾伟,等. 计及光伏消纳率的分布式光伏电源双层多场景规化[J]. 现代电力,2019, 36(2): 17-24.
|
| [18] |
傅旭,张雨津. 利用光热发电提升高比例新能源系统的新能源消纳率[J]. 分布式能源,2022, 7(4): 37-41.
|
| [19] |
边晓燕,姜莹,赵耀,等. 高渗透率可再生能源微电网的风柴荷协调调频策略[J]. 电力系统自动化,2018, 42(15): 102-109.
|
| [20] |
丁明,刘先放,毕锐,等. 采用综合性能指标的高渗透率分布式电源集群划分方法[J]. 电力系统自动化,2018, 42(15): 47-52, 141.
|
| [21] |
陈思佳,赵诗琰,王广君. 高渗透率下兼顾光伏出力和网损的配电网运行优化方法[J]. 电测与仪表,2023, 60(3): 19-25.
|
| [22] |
梁双,胡学浩,张东霞,等. 基于随机模型的光伏发电置信区间容量评估方法[J]. 电力系统自动化,2012, 36(13): 33-34.
|
| [23] |
赵宇鑫. 微电网多目标优化调度策略研究[D]. 北京:北方工业大学,2021.
|
/
| 〈 |
|
〉 |