Multi-Objective Optimal Scheduling Strategy for Microgrid With High Permeability Clean Energy

XU Zhongyang,SONG Xiaotong

Distributed Energy ›› 2023, Vol. 8 ›› Issue (2) : 19-25.

PDF(1323 KB)
PDF(1323 KB)
Distributed Energy ›› 2023, Vol. 8 ›› Issue (2) : 19-25. DOI: 10.16513/j.2096-2185.DE.2308203
Basic Research

Multi-Objective Optimal Scheduling Strategy for Microgrid With High Permeability Clean Energy

Author information +
History +

Abstract

The high proportion of wind-photovoltaic power supply connected to microgrid system introduces more uncertain factors, which brings challenges to the optimal dispatching of power grid. In order to improve the economic and environmental performance of the system, rationally allocate the installed capacity of the wind and photovoltaic units, and promote the consumption of the wind-photovoltaic energy, this paper establishes a high-proportion clean energy microgrid model, defines the economic and environmental objective functions, proposes a multi-objective optimal scheduling strategy, and uses particle swarm optimization algorithm to solve the problem. The influence of clean energy permeability on the economic and technical characteristics of microgrid and the consumption rate of clean energy is explored through the analysis of examples. With the increase of the permeability of clean energy, the absorption rate generally shows a downward trend, and there is a critical permeability value. Increasing the permeability within the critical range can effectively improve the comprehensive operation efficiency of microgrid. The results show that the proposed scheduling strategy is correct and effective, the algorithm convergence is reliable, and it can provide an important reference for the rational allocation of the installed capacity of wind and photovoltaic units.

Key words

high penetration / consumption rate / clean energy / microgrid / multi-objective optimal scheduling

Cite this article

Download Citations
Zhongyang XU , Xiaotong SONG. Multi-Objective Optimal Scheduling Strategy for Microgrid With High Permeability Clean Energy[J]. Distributed Energy Resources. 2023, 8(2): 19-25 https://doi.org/10.16513/j.2096-2185.DE.2308203

References

[1]
孙宏斌,张璇,许嘉禾,等. 低碳智能人体电网:概念、架构和展望[J/OL]. 中国电机工程学报:1-13[2023-01-20]. https://doi.org/10.13334/j.0258-8013.pcsee.222960.
SUN Hongbin, ZHANG Xuan, XU Jiahe, et al. Low-carbon smart body grid: Concept, architecture and outlook[J/OL]. Proceedings of the CSEE: 1-13[2023-01-20]. https://doi.org/10.13334/j.0258-8013.pcsee.222960.
[2]
何平,李桂鑫. 清洁能源高比例接入与终端再电气化对城市电网的影响分析[J]. 电力系统及其自动化学报2021, 33(6): 143-150.
HE Ping, LI Guixin. Analysis of influences of high-proportion clean energy access and terminal re-electrification on urban power grid[J]. Proceedings of the CSU-EPSA, 2021, 33(6): 143-150.
[3]
OPATHELLA C, ELKASRAWY A, MOHAMED A, et al. Optimal scheduling of merchant-owned energy storage systems with multiple ancillary services[J]. IEEE Open Access Journal on Power Energy, 2020, 7: 31-40.
[4]
SCHMIDT S, MELCHIOR A, HAWKES I, et al. Projecting the future levelized cost of electricity storage technologies[J]. IEEE Open Access Journal on Power Energy, 2019, 3(1): 81-100.
[5]
韩肖清,李廷钧,张东霞,等. 双碳目标下的新型电力系统规划新问题及关键技术[J]. 高电压技术2021, 47(9): 3036-3046.
HAN Xiaoqing, LI Tingjun, ZHANG Dongxia, et al. New issues and key technologies of new power system planning under double carbon goals[J]. High Voltage Engineering, 2021, 47(9): 3036-3046.
[6]
姜红丽,刘羽茜,冯一铭,等. 碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J]. 发电技术2022, 43(1): 54-64.
JIANG Hongli, LIU Yuxi, FENG Yiming, et al. Analysis of power generation technology trend in 14th Five-Year Plan under the background of carbon peak and carbon neutrality[J]. Power Generation Technology, 2022, 43(1): 54-64.
[7]
卢恒光,范欣辰. 考虑环境效益的微电网经济功率优化[J]. 电气技术2022, 23(11): 56-61.
LU Hengguang, FAN Xinchen. Economic power optimization of microgrid considering environmental benefits[J]. Electrical Engineering, 2022, 23(11): 56-61.
[8]
刘慧文,王生铁,刘广忱,等. 风光柴储微电网容量优化配置的运行策略[J]. 太阳能学报2022, 43(9): 453-460.
LIU Huiwen, WANG Shengtie, LIU Guangchen, et al. Operation strategy of optimal capacity configuration for microgrid with WT-PV-DE-BES[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 453-460.
[9]
姜海洋,杜尔顺,金晨,等. 高比例清洁能源并网的跨国互联电力系统多时间尺度储能容量优化规划[J]. 中国电机工程学报2021, 41(6): 2101-2115.
JIANG Haiyang, DU Ershun, JIN Chen, et al. Optimal planning of multi-time scale energy storage capacity of cross-national interconnected power system with high proportion of clean energy[J]. Proceedings of the CSEE, 2021, 41(6): 2101-2115.
[10]
申洪,周勤勇,刘耀,等. 碳中和背景下全球能源互联网构建的关键技术及展望[J]. 发电技术2021, 42(1): 8-19.
SHEN Hong, ZHOU Qinyong, LIU Yao, et al. Key technologies and prospects for the construction of global energy internet under the background of carbon neutral[J]. Power Generation Technology, 2021, 42(1): 8-19.
[11]
孙伟卿,刘唯,裴亮,等. 高比例可再生能源背景下考虑储能系统价值的储-输多阶段联合规划[J]. 高电压技术2021, 47(3): 983-993.
SUN Weiqing, LIU Wei, PEI Liang, et al. Multistage energy storage-transmission network joint planning considering the system value of energy storage under the background of high penetration renewable energy[J]. High Voltage Engineering, 2021, 47(3): 983-993.
[12]
季宇,牛耕,曲雪原,等. 计及多能互补的海岛群微网系统规划评价方法[J]. 智慧电力2021, 49(6): 24-31.
JI Yu, NIU Geng, QU Xueyuan, et al. Planning evaluation method of islands microgrid system considering multi-energy complementary[J]. Smart Power, 2021, 49(6): 24-31.
[13]
徐青山,李淋,蔡霁霖,等. 考虑电能交互的冷热电多微网系统日前优化经济调度[J]. 电力系统自动化2018, 42(21): 36-44.
XU Qingshan, LI Lin, CAI Jilin, et al. Day-ahead optional economic dispatch of CCHP multi-microgrid system considering power interaction among microgrids[J]. Automation of Electric Power Systems, 2018, 42(21): 36-44.
[14]
宋晓通,翁志鹏,周京华,等. 基于多态不确定性全时序仿真的微电网可靠性评估与规划[J]. 高电压技术2020, 46(5): 1508-1517.
SONG Xiaotong, WENG Zhipeng, ZHOU Jinghua, et al. Reliability evaluation and planning of microgrid based on whole time sequence simulation of multi-state uncertainty[J]. High Voltage Engineering, 2020, 46(5): 1508-1517.
[15]
戚永志,黄越辉,王伟胜,等. 高比例清洁能源下水风光消纳能力分析方法研究[J]. 电网与清洁能源2020, 36(1): 55-63.
QI Yongzhi, HUANG Yuehui, WANG Weisheng, et al. A study on hydro-wind-solar consumption analysis method for high proportion of clean energy[J]. Power System and Clean Energy, 2020, 36(1): 55-63.
[16]
王仕俊,薄怀师,王定刚,等. 计及风光消纳的能源互联系统经济优化[J]. 可再生能源2019, 37(3): 411-417.
WANG Shijun, BO Huaishi, WANG Dinggang, et al. Economic optimization of energyinterconnection system with consideration of scenery consumption[J]. Renewable Energy Resources, 2019, 37(3): 411-417.
[17]
孙旻,张大,曾伟,等. 计及光伏消纳率的分布式光伏电源双层多场景规化[J]. 现代电力2019, 36(2): 17-24.
SUN Min, ZHANG Da, ZENG Wei, et al. Bi-layer multi-scenario planning of distributed photovoltaic generations considering photovoltaic accommodation rate[J]. Modern Electric Power, 2019, 36(2): 17-24.
[18]
傅旭,张雨津. 利用光热发电提升高比例新能源系统的新能源消纳率[J]. 分布式能源2022, 7(4): 37-41.
FU Xu, ZHANG Yujin. Using photothermal power generation to improve the new energy consumption rate of high proportion of new energy systems[J]. Distributed Energy, 2022, 7(4): 37-41.
[19]
边晓燕,姜莹,赵耀,等. 高渗透率可再生能源微电网的风柴荷协调调频策略[J]. 电力系统自动化2018, 42(15): 102-109.
BIAN Xiaoyan, JIANG Ying, ZHAO Yao, et al. Coordinated frequency regulation strategy of wind, disesl and load for microgrid with high-penetration renewable energy[J]. Automation of Electric Power Systems, 2018, 42(15): 102-109.
[20]
丁明,刘先放,毕锐,等. 采用综合性能指标的高渗透率分布式电源集群划分方法[J]. 电力系统自动化2018, 42(15): 47-52, 141.
DING Ming, LIU Xianfang, BI Rui, et al. Method for cluster partition of high-penetration distributed generators based on comprehensive performance index[J]. Automation of Electric Power Systems, 2018, 42(15): 47-52, 141.
[21]
陈思佳,赵诗琰,王广君. 高渗透率下兼顾光伏出力和网损的配电网运行优化方法[J]. 电测与仪表2023, 60(3): 19-25.
CHEN Sijia, ZHAO Shiyan, WANG Guangjun. An optimization method of distributed network with high PV penetration considering active power output and losses[J]. Electrical Measurement & Instrumentation, 2023, 60(3): 19-25.
[22]
梁双,胡学浩,张东霞,等. 基于随机模型的光伏发电置信区间容量评估方法[J]. 电力系统自动化2012, 36(13): 33-34.
LIANG Shuang, HU Xuehao, ZHANG Dongxia, et al. Confidence interval capacity evaluation method for photovoltaic power generation based on stochastic model[J]. Automation of Electric Power Systems, 2012, 36(13): 33-34.
[23]
赵宇鑫. 微电网多目标优化调度策略研究[D]. 北京:北方工业大学,2021.
ZHAO Yuxin. Research on multi-objective optional dispatch strategy for microgrid[D]. Beijing: North China University of Technology, 2021.

Funding

National Key Research and Development Program of China(2021YFE0103800)
PDF(1323 KB)

Accesses

Citation

Detail

Sections
Recommended

/