Optimal Operation of Household Hydrogen Energy System Considering Flexible Load

LI Manshu,MA Lei,LI Rui,ZHANG Haili,YUAN Tiejiang,WANG Kang

Distributed Energy ›› 2023, Vol. 8 ›› Issue (2) : 52-60.

PDF(1468 KB)
PDF(1468 KB)
Distributed Energy ›› 2023, Vol. 8 ›› Issue (2) : 52-60. DOI: 10.16513/j.2096-2185.DE.2308207
Application Technology

Optimal Operation of Household Hydrogen Energy System Considering Flexible Load

Author information +
History +

Abstract

In order to achieve low-carbon, clean, efficient and stable household energy use, an optimal operation method of household hydrogen energy system considering flexible load is proposed. Firstly, in order to fully utilize the benefits of hydrogen energy, a household terminal energy system coupled with distributed energy, user load, and hydrogen energy storage system is constructed, and mathematical models of various equipment in the system are established. Secondly, in order to give full play to the schedulable ability of user loads, electrical and thermal loads are modeled and analyzed based on the importance of the load. Finally, an optimization model for household hydrogen energy system is established with the goal of minimizing the total life cycle cost and the user energy cost. The simulation results show that considering load transfer and reduction on the basis of satisfying user comfort can effectively reduce the comprehensive operating cost of the system, and realize economic and flexible operation of the household hydrogen energy system.

Key words

flexible load / household / hydrogen energy / transfer / reduction

Cite this article

Download Citations
Manshu LI , Lei MA , Rui LI , et al . Optimal Operation of Household Hydrogen Energy System Considering Flexible Load[J]. Distributed Energy Resources. 2023, 8(2): 52-60 https://doi.org/10.16513/j.2096-2185.DE.2308207

References

[1]
陈国平,董昱,梁志峰. 能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报2020, 40(17): 5493-5505.
CHEN Guoping, DONG Yu, LIANG Zhifeng. Analysis and reflection on high-quality development of new energy with Chinese characteristics in energy transition[J]. Proceedings of the CSEE, 2020, 40(17): 5493-5505.
[2]
肖先勇,郑子萱. “双碳”目标下新能源为主体的新型电力系统:贡献、关键技术与挑战[J]. 工程科学与技术2022, 54(1): 47-59.
XIAO Xianyong, ZHENG Zixuan. New power systems with new energy sources under the “double carbon” target: Contributions, key technologies and challenges[J]. Engineering Science and Technology, 2022, 54(1): 47-59.
[3]
童光毅. 基于双碳目标的智慧能源体系构建[J]. 智慧电力2021, 49(5): 1-6.
TONG Guangyi. Construction of smart energy system based on dual carbon goal[J]. Smart Power, 2021, 49(5): 1-6.
[4]
曹军文,郑云,张文强,等. 能源互联网推动下的氢能发展[J]. 清华大学学报:自然科学版2021, 61(4): 302-311.
CAO Junwen, ZHENG Yun, ZHENG Wenqiang, et al. Hydrogen energy development driven by the energy internet[J]. Journal of Tsinghua University: Science and Technology, 2021, 61(4): 302-311.
[5]
邓浩,陈洁,焦东东,等. 风氢耦合并网系统能量管理控制策略[J]. 高电压技术2020, 46(1): 99-106.
DENG Hao, CHEN Jie, JIAO Dongdong, et al. Control strategy for energy management of hybrid grid-connected system of wind and hydrogen[J]. High Voltage Engineering, 2020, 46(1): 99-106.
[6]
刘文彬,刘永刚,文祥宇,等. 基于需求响应的居民侧柔性负荷多目标优化研究[J]. 山东电力技术2022, 49(8): 42-49.
LIU Wenbin, LIU Yonggang, WEN Xiangyu, et al. Research on multi-objective optimization of residential flexible loads based on demand response[J]. Shandong Electric Power, 2022, 49(8): 42-49.
[7]
何方波,赵明,王楷,等. 考虑需求响应的源荷协调多目标优化方法[J]. 电网与清洁能源2021, 37(10): 51-58.
HE Fangbo, ZHAO Ming, WANG Kai, et al. A multi objective optimization method of source load coordination considering cemand response[J]. Power System and Clean Energy, 2021, 37(10): 51-58.
[8]
赵忠啟,常喜强,孙开宁,等. 分时电价政策下可时移性电采暖负荷经济性分析[J]. 山东电力技术2021, 48(3): 6-10.
ZHAO Zhongqi, CHANG Xiqiang, SUN Kaining, et al. Economic analysis of time shifting electric heating load under time-of-use pricing policy[J]. Shandong Electric Power, 2021, 48(3): 6-10.
[9]
张赢,黄伟,刘文彬,等. 考虑柔性负荷的综合能源站-网协同优化规划[J]. 电气工程学报2022, 17(2): 176-186.
ZHANG Ying, HUANG Wei, LIU Wenbin, et al. Energy station-network collaborative planning with flexible load[J]. Journal of Electrical Engineering, 2022, 17(2): 176-186.
[10]
任鑫芳,张志朝,许李天伦,等. 计及电动汽车与温控负荷需求响应的分层能源系统优化调度[J]. 电力建设2022, 43(9): 77-86.
REN Xinfang, ZHANG Zhichao, XU Litianlun, et al. Optimal scheduling of hierarchical energy systems with electric vehicles and temperature-controlled load demand response[J]. Electric Power Construction, 2022, 43(9): 77-86.
[11]
王燕,杨秀媛,徐剑锋,等. 民用可控负荷参与需求响应的控制策略[J]. 发电技术2020, 41(6): 638-649.
WANG Yan, YANG Xiuyuan, XU Jianfeng, et al. Control strategy of civil controllable load participating in demand response[J]. Power Generation Technology, 2020, 41(6): 638-649.
[12]
金森钧. 基于分布式发电和储能的家庭能量管理系统设计与优化调度算法研究[D]. 杭州:浙江大学,2017.
JIN Senjun. Research on the design and optimal scheduling algorithm of home energy management system based on distributed generation and energy storage[D]. Hangzhou: Zhejiang University, 2017.
[13]
刘旭菲,彭丽莎,黄松岭. 基于模型预测控制的家庭能量管理优化调度方法研究[J/OL]. 电测与仪表:1-8[2022-11-19].
LIU Xufei, PENG Lisha, HUANG Songling. Optimization strategy of home energy management system based on model predictive control[J/OL]. Electrical Measurement & Instrumentation: 1-8[2022-11-19].
[14]
宋爽,李中伟,刘勇,等. 住宅小区负荷群用电优化策略研究[J]. 电测与仪表2021, 58(8): 57-66.
SONG Shuang, LI Zhongwei, LIU Yong, et al. Study on optimization strategy of load group power consumption in residential area[J]. Electrical Measurement & Instrumentation, 2021, 58(8): 57-66.
[15]
IQBAL M M, ZIA M F, BEDDIAR K, et al. Optimal scheduling of grid transactive home demand responsive appliances using polar bear optimization algorithm[J]. IEEE Access, 2020, 8: 22285-22296.
[16]
MOLLA T, KHAN B, MOGES B, et al. Integrated energy optimization of smart home appliances with cost-effective energy management system[J]. CSEE Journal of Power and Energy Systems, 2019, 2(5): 249-258.
[17]
江泽昌,刘天羽,江秀臣,等. 智能电网下多时间尺度家庭能量管理优化策略[J]. 太阳能学报2021, 42(1): 460-469.
JIANG Zechang, LIU Tianyu, JIANG Xiuchen, et al. Multi-time scale home energy management optimization strategy in smart grid[J]. Acta Energiae Solaris Sinica, 2021, 42(1): 460-469.
[18]
刘昕宇. 基于需求响应的家庭系统能效管理优化[D]. 镇江:江苏大学,2020.
LIU Xinyu. Energy efficiency management optimization for demand-based home systems[D]. Zhenjiang: Jiangsu University, 2020.
[19]
EL-EMAM R S, ÖZCAN H. Comprehensive review on the techno-economics of sustainable large-scale clean gydrogen production[J]. Journal of Cleaner Production, 2019, 220: 593-609.
[20]
俞红梅,衣宝廉. 电解制氢与氢储能[J]. 中国工程科学2018, 20(3): 58-65.
YU Hongmei, YI Baolian. Hydrogen for energy storage and hydrogen production from electrolysis[J]. Chinese Engineering Science, 2018, 20(3): 58-65.
[21]
GOLKHATMI Z S, ASGHAR M I, LUND P D. A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112339.
[22]
许世森,张瑞云,程健,等. 电解制氢与高温燃料电池在电力行业的应用与发展[J]. 中国电机工程学报2019, 39(9): 2531-2537.
XU Shisen, ZHANG Ruiyun, CHENG Jian, et al. Application and development of electrolytic hydrogen production and high temperature fuel cell in electric power industry[J]. Proceedings of the CSEE, 2019, 39(9): 2531-2537.
[23]
刘继春,周春燕,高红均,等. 考虑氢能-天然气混合储能的电-气综合能源微网日前经济调度优化[J]. 电网技术2018, 42(1): 170-179.
LIU Jichun, ZHOU Chunyan, GAO Hongjun, et al. A day-ahead economic dispatch optimization model of integrated electricity-natural gas system considering hydrogen-gas energy storage system in microgrid[J]. Power System Technology. 2018, 42(1): 170-179.
[24]
李思儒. 考虑区域大气环境约束的新型电力系统优化调度[D]. 大连:大连理工大学,2021.
LI Siru. Optimal dispatch of novel power system considering the constraints of regional atmospheric environment[D]. Dalian: Dalian University of Technology, 2021.
[25]
韩莹,于三川,李荦一,等. 计及阶梯式碳交易的风光氢储微电网低碳经济配置方法[J]. 高电压技术2022, 48(7): 2523-2533.
HAN Ying, YU Sanchuan, LI Luoyi, et al. Low-carbon and economic configuration method for solar hydrogen storage microgrid including stepped carbon trading[J]. High Voltage Engineering, 2022, 48(7): 2523-2533.
[26]
XU Yanhui, XU Yijia, HUANG Yan. Generation of typical operation curves for hydrogen storage applied to the wind power fluctuation smoothing mode[J]. Global Energy Interconnection, 2022, 5(4): 353-361.
[27]
陈维荣,傅王璇,韩莹,等. 计及需求侧的风-光-氢多能互补微电网优化配置[J]. 西南交通大学学报2021, 56(3): 640-649.
CHEN Weirong, FU Wangxuan, HAN Ying, et al. Optimal configuration of wind-solar-hydrogen multi-energy complementary microgrid with demand side[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 640-649.
[28]
杨洋. 基于氢能的电热气耦合微网容量优化配置研究[D]. 大连:大连理工大学,2022.
YANG Yang. Research on optional capacity allocation of electrothermal gas coupled microgrid based on hydrogen energy[D]. Dalian: Dalian University of Technology, 2022.
[29]
邓杰,姜飞,王文烨,等. 考虑电热柔性负荷与氢能精细化建模的综合能源系统低碳运行[J]. 电网技术2022, 46(5): 1692-1704.
DENG Jie, JIANG Fei, WANG Wenye, et al. Low-carbon optimized operation of integrated energy system considering electric-heat flexible load and hydrogen energy refined modeling[J]. Power System Technology, 2022, 46(5): 1692-1704.
[30]
孙国强,王善磊,陈胜,等. 基于双层Kriging元模型算法的多产消代理商主从博弈能量管理模型[J]. 电力自动化设备2021, 41(11): 8-16.
SUN Guoqiang, WANG Shanlei, CHEN Sheng, et al. Stackelberg game model for energy management of multiple prosumer aggregators based on bilevel Kriging meta model algorithm[J]. Electric Power Automation Equipment, 2021, 41(11): 8-16.
[31]
杨茂,王金鑫. 考虑可再生能源出力不确定的孤岛型微电网优化调度[J]. 中国电机工程学报2021, 41(3): 973-985.
YANG Mao, WANG Jinxin. Optimal scheduling of islanded microgrid considering uncertain output of renewable energy[J]. Proceedings of the CSEE, 2021, 41(3): 973-985.

Funding

Science and Technology Project of State Grid Xinjiang Electric Power Co., Ltd.(5230YX22000D)
PDF(1468 KB)

Accesses

Citation

Detail

Sections
Recommended

/