Fault Diagnosis Method of Wind Turbine Gearbox Based on Multi-Mode Time-Frequency Image Fusion

CHAN Yang,LIU Yongqian,HAN Shuang,WANG Luo

Distributed Energy ›› 2023, Vol. 8 ›› Issue (3) : 17-23.

PDF(1747 KB)
PDF(1747 KB)
Distributed Energy ›› 2023, Vol. 8 ›› Issue (3) : 17-23. DOI: 10.16513/j.2096-2185.DE.2308303
Basic Research

Fault Diagnosis Method of Wind Turbine Gearbox Based on Multi-Mode Time-Frequency Image Fusion

Author information +
History +

Abstract

Feature extraction is the key to the fault diagnosis problem, and the variable load of wind turbine gearboxes, large amount of vibration data and low information density make it difficult to balance the feature learning performance and computational cost of multimodal fusion diagnosis method. To this end, a wind turbine gearbox fault diagnosis method based on multimodal time-frequency map fusion is proposed. First, a wavelet packet decomposition algorithm is used to analyze the fault features of the gearbox vibration data set; then, the decomposed sub-signal and the original signal are transformed into two-dimensional time-frequency images to form complementary fault features reflecting the wavelet domain and the time-frequency domain; finally, a convolutional neural network (CNN) is used to learn the deep features of the image texture and fuse them separately to train a CNN-ViT (vision transformer) multimodal fault diagnosis model. The proposed model is validated with Case Western Reserve University gearbox bearing data, and has higher accuracy compared with other unimodal and multimodal methods under variable load and unknown faults, and the time-frequency map fusion method can realize the fault feature learning in both wavelet domain and time-frequency domain dual modality with lower computational cost.

Key words

wind turbine gear box / fault diagnosis / wavelet packet analysis / multimodal fusion / image classification

Cite this article

Download Citations
Yang CHAN , Yongqian LIU , Shuang HAN , et al. Fault Diagnosis Method of Wind Turbine Gearbox Based on Multi-Mode Time-Frequency Image Fusion[J]. Distributed Energy Resources. 2023, 8(3): 17-23 https://doi.org/10.16513/j.2096-2185.DE.2308303

References

[1]
李辉,胡姚刚,李洋,等. 大功率并网风电机组状态监测与故障诊断研究综述[J]. 电力自动化设备2016, 36(1): 6-16.
LI Hui, HU Yaogang, LI Yang, et al. Research review on condition monitoring and fault diagnosis of high power grid-connected wind turbines[J]. Electric Power Automation Equipment, 2016, 36(1): 6-16.
[2]
张真真,吴立东,陈晓敏,等. 基于支持向量机的风电机组变桨系统故障诊断[J]. 分布式能源2021, 6(3): 70-75.
ZHANG Zhenzhen, WU Lidong, CHEN Xiaomin, et al. Fault diagnosis of wind turbine pitch system based on support vector machine[J]. Distributed Energy, 2021, 6(3): 70-75.
[3]
KIM K, PARTHASARATHY G, ULUYOL O, et al. Use of SCADA data for failure detection in wind turbines[C]//Presented at the 2011 Energy Sustainability Conference and Fuel Cell Conference, 7-10 August 2011, Washington, D. C. American Society of Mechanical Engineers Digital Collection, 2011.
[4]
陈雪峰,郭艳婕,许才彬,等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程2020, 31(2): 175-189.
CHEN Xuefeng, GUO Yanjie, XU Caibin, et al. Review of fault diagnosis and monitoring for wind power equipment[J]. China Mechanical Engineering, 2020, 31(2): 175-189.
[5]
李浪,刘辉海,赵洪山. 风力发电机振动监测与故障诊断方法综述[J]. 电网与清洁能源2017, 33(8): 94-100, 108.
LI Lang, LIU Huihai, ZHAO Hongshan. Review of vibration monitoring and fault diagnosis methods of wind turbines[J]. Power Grid and Clean Energy, 2017, 33(8): 94-100, 108.
[6]
PICHIKA S N, MEGANAA G, GEETHA R S, et al. Multi-component fault classification of a wind turbine gearbox using integrated condition monitoring and hybrid ensemble method approach[J]. Applied Acoustics, 2022, 195.
[7]
LIANG P, DENG C, YUAN X, et al. A deep capsule neural network with data augmentation generative adversarial networks for single and simultaneous fault diagnosis of wind turbine gearbox[J]. ISA Transactions, 2022.
[8]
李东东,刘宇航,赵阳,等. 基于改进生成对抗网络的风机行星齿轮箱故障诊断方法[J]. 中国电机工程学报2021, 41(21): 7496-7507.
LI Dongding, LIU Yuhang, ZHAO Yang, et al. Fault diagnosis method of wind turbine planetary gearbox based on improved generative adversarial network[J]. Proceedings of the CSEE, 2021, 41(21): 7496-7507.
[9]
ZHANG K, TANG B, DENG L, et al. A hybrid attention improved ResNet based fault diagnosis method of wind turbines gearbox[J]. Measurement, 2021, 179: 109491.
[10]
JIANG G, JIA C, NIE S, et al. Multiview enhanced fault diagnosis for wind turbine gearbox bearings with fusion of vibration and current signals[J]. Measurement, 2022, 196.
[11]
TANG Z, WANG M, OUYANG T, et al. A wind turbine bearing fault diagnosis method based on fused depth features in time-frequency domain[J]. Energy Reports, 2022, 8.
[12]
薛阳,雷文平,岳帅旭,等. 多模态学习方法在滚动轴承故障诊断中的应用[J]. 机械科学与技术2022, 41(8): 1149-1153.
XUE Yang, LEI Wenping, YUE Shuaixu, et al. Application of multimodal deep learning methods in rolling bearing fault diagnosis[J]. Mechanical Science and Technology for Aerospace Enginering, 2022, 41(8): 1149-1153.
[13]
马临超,杨捷,肖鹏,等. 基于新型卷积神经网络的非侵入式负载监测方法[J]. 智慧电力2022, 50(4): 96-102.
MA Linchao, YANG Jie, XIAO Peng, et al. Non-invasive load monitoring method based on novel convolutional neural network[J]. Smart Power, 2022, 50(4): 96-102.
[14]
蒋爱国,符培伦,谷明,等. 基于多模态堆叠自动编码器的感应电机故障诊断[J]. 电子测量与仪器学报2018, 32(8): 17-23.
JIANG Aiguo, FU Peilun, GU Ming, et al. Induction motor fault diagnosis based on multimodal stacked auto-encoder[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(8): 17-23.
[15]
付晓敏. 基于小波变换的改进混合蛙跳-差分进化-神经网络预测模型的短期风速预测[J]. 分布式能源2021, 6(6): 38-44.
FU Xiaomin. Improved hybrid frog-hopping-differential evolutionary-neural network prediction model based on wavelet transform for short-term wind speed prediction[J]. Distributed Energy, 2021, 6(6): 38-44.
[16]
张利慧,李晓波,俎海东,等. 风力发电机组滚动轴承故障振动诊断方法综述[J]. 内蒙古电力技术2022, 40(3): 7-12.
ZHANG Lihui, LI Xiaobo, ZU Haidong, et al. Overview of fault vibration diagnosis methods for rolling bearing of wind turbine units[J]. Inner Mongolia Electric Power, 2022, 40(3): 7-12.
[17]
黄树帮,陈耀,金宇清. 碳中和背景下多通道特征组合超短期风电功率预测[J]. 发电技术2021, 42(1): 60-68.
HUANG Shubang, CHEN Yao, JIN Yuqing. A multi-channel feature combination model for ultra-short-term wind power prediction under carbon neutral background[J]. Power Generation Technology, 2021, 42(1): 60-68.
[18]
高阳,谢丽蓉,叶家豪,等. 自适应提升及预测误差修正的风电功率超短期预测[J]. 智慧电力2022, 50(8): 14-21.
GAO Yang, XIE Lirong, YE Jiahao, et al. Ultra-short-term wind power prediction based on adaptive lifting and prediction error correction[J]. Smart Power, 2022, 50(8): 14-21.
[19]
崔宝珍,王斌,任川,等. 应用时频图像纹理特征的行星齿轮故障诊断[J]. 振动.测试与诊断2022, 42(6): 1141-1146, 1245.
CUI Baozhen, WANG Bin, REN Chuan, et al. Fault diagnosis of planetary gear used time-frequency image texture features[J]. Journal of Vibration. Measurement and Diagnosis, 2022, 42(6): 1141-1146, 1245.
[20]
JIAO J, ZHAO M, LIN J, et al. A comprehensive review on convolutional neural network in machine fault diagnosis[J]. Neurocomputing, 2020, 417.
[21]
任泽裕,王振超,柯尊旺,等. 多模态数据融合综述[J]. 计算机工程与应用2021, 57(18): 49-64.
REN Zeyu, WANG Zhenchao, KE Zunwang, et al. Survey of multimodal data fusion[J]. Computer Engineering and Applications, 2021, 57(18): 49-64.
[22]
李世玲,李治,李合生. 基于小波包能量特征的滚动轴承故障监测方法[J]. 系统仿真学报2003, 15(1): 76-80, 83.
LI Shiling, LI Zhi, LI Hesheng. The method of roller bearing fault monitoring based on wavelet packet energy feature[J]. Journal of System Simulation, 2003, 15(1): 76-80, 83.
[23]
崔玲丽,安加林,王鑫,等. 基于变尺度Lempel-Ziv的滚动轴承损伤程度评估方法[J]. 振动工程学报2022, 35(5): 1250-1258.
CUI Lingli, AN Jialin, WANG Xin, et al. Evaluation method of rolling bearing damage degree based on variable scale lempel-Ziv[J]. Journal of Vibration Engineering, 2022, 35(5): 1250-1258.

Funding

Science and Technology Project of China Three Gorges Group(212103368)
PDF(1747 KB)

Accesses

Citation

Detail

Sections
Recommended

/